Solutions for Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
Problem 1AYU:
True or False The quotient of two polynomial expressions is a rational expression, (p. A35)Problem 3AYU:
3.Graph .(pp.22-23)
Problem 4AYU:
Graph y=2 ( x+1 ) 2 3 using transformations.(pp.106-114)Problem 5AYU:
5. True or False The domain of every rational function is the set of all real numbers.
Problem 6AYU:
6. If, as or as , the values of approach some fixed number L, then the line is a _____ of the...Problem 7AYU:
7. If, as x approaches some number c, the values of , then the line is a ______ of the graph of...Problem 8AYU:
8. For a rational function R, if the degree of the numerator is less than the degree of the...Problem 11AYU:
12. True or False If the degree of the numerator of a rational function equals the degree of the...Problem 12AYU:
12. True or False: If the degree of the numerator of a rational function equals the degree of the...Problem 13AYU:
If R( x )= p( x ) q( x ) is a rational function and if p and q have no common factors, then R is...Problem 14AYU:
14. Which type of asymptote, when it occurs, describes the behavior of a graph when x is close to...Problem 26AYU:
In Problems 15-26, find the domain of each rational function R( x )= 3( x 2 x6 ) 4( x 2 9 )Problem 27AYU:
In Problems 27-32, use the graph shown to find a. The domain and range of each function b. The...Problem 28AYU:
In Problems 27-32, use the graph shown to find
(a) The domain and range of each function (b) The...Problem 29AYU:
In Problems 27-32, use the graph shown to find a. The domain and range of each function b. The...Problem 30AYU:
In Problems 27-32, use the graph shown to find a. The domain and range of each function b. The...Problem 31AYU:
In Problems 27-32, use the graph shown to find a. The domain and range of each function b. The...Problem 32AYU:
In Problems 27-32, use the graph shown to find
(a) The domain and range of each function (b) The...Problem 33AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 34AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 35AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 36AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 37AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 38AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 39AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 40AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 41AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 42AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 43AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 44AYU:
In Problems 33-44, (a) graph the rational function using transformations, (b) use the final graph to...Problem 45AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 46AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 47AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 48AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 49AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 50AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 51AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 52AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 53AYU:
In problems 45 56, find the vertical, horizontal and oblique asymptotes, if any, of each rational...Problem 54AYU:
In problems 3344, (a) graph the rational function using transformation, (b) use the final graph to...Problem 55AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 56AYU:
In Problems 45-56, find the vertical, horizontal, and oblique asymptotes, if any, of each rational...Problem 57AYU:
Resistance in Parallel Circuits From Ohm’s Law for circuits, it follows that the total resistance...Problem 58AYU:
Population Model A rare species of insect was discovered in the Amazon Rain Forest. To protect the...Problem 59AYU:
59. Gravity In physics, it is established that the acceleration due to gravity, , at a height h...Problem 60AYU:
Newtons Method In calculus you will learn that if p(x)=anxn+an1xn1++a1x+a0 is a polynomial function,...Problem 61AYU:
Exploration The standard form of the rational function R( x )= mx+b cx+d , where c0 , is R( x )=a( 1...Problem 63AYU:
If the graph of a rational function R has the vertical asymptote x=4, the factor x4 must be present...Problem 64AYU:
If the graph of a rational function R has the vertical asymptote x=4 , the factor x4 must be present...Problem 65AYU:
65. The graph of a rational function cannot have both a horizontal and an oblique asymptote. Explain...Problem 66AYU:
Make up a rational function that has y=2x+1 as an oblique asymptote. Explain the methodology that...Problem 67AYU:
Problems 67-70 are based on material learned earlier in the course. The purpose of these problems is...Problem 68AYU:
Find the average rate of change of from to .
Browse All Chapters of This Textbook
Chapter F - Foundations: A Prelude To FunctionsChapter F.1 - The Distance And Midpoint FormulasChapter F.2 - Graphs Of Equations In Two Variables; Intercepts; SymmetryChapter F.3 - LinesChapter F.4 - CirclesChapter 1 - Functions And Their GraphsChapter 1.1 - FunctionsChapter 1.2 - The Graph Of A FunctionChapter 1.3 - Properties Of FunctionsChapter 1.4 - Library Of Functions; Piecewise-defined Functions
Chapter 1.5 - Graphing Techniques: TransformationsChapter 1.6 - Mathematical Models: Building FunctionsChapter 1.7 - Building Mathematical Models Using VariationChapter 2 - Linear And Quadratic FunctionsChapter 2.1 - Properties Of Linear Functions And Linear ModelsChapter 2.2 - Building Linear Models From DataChapter 2.3 - Quadratic Functions And Their ZerosChapter 2.4 - Properties Of Quadratic FunctionsChapter 2.5 - Inequalities Involving Quadratic FunctionsChapter 2.6 - Building Quadratic Models From Verbal Descriptions And From DataChapter 2.7 - Complex Zeros Of A Quadratic FunctionChapter 2.8 - Equations And Inequalities Involving The Absolute Value FunctionChapter 3 - Polynomial And Rational FunctionsChapter 3.1 - Polynomial Functions And ModelsChapter 3.2 - The Real Zeros Of A Polynomial FunctionChapter 3.3 - Complex Zeros; Fundamental Theorem Of AlgebraChapter 3.4 - Properties Of Rational FunctionsChapter 3.5 - The Graph Of A Rational FunctionChapter 3.6 - Polynomial And Rational InequalitiesChapter 4 - Exponential And Logarithmic FunctionsChapter 4.1 - Composite FunctionsChapter 4.2 - One-to-one Functions; Inverse FunctionsChapter 4.3 - Exponential FunctionsChapter 4.4 - Logarithmic FunctionsChapter 4.5 - Properties Of LogarithmsChapter 4.6 - Logarithmic And Exponential EquationsChapter 4.7 - Financial ModelsChapter 4.8 - Exponential Growth And Decay Models; Newton’s Law; Logistic Growth And Decay ModelsChapter 4.9 - Building Exponential, Logarithmic, And Logistic Models From DataChapter 5 - Trigonometric FunctionsChapter 5.1 - Angles And Their MeasureChapter 5.2 - Trigonometric Functions: Unit Circle ApproachChapter 5.3 - Properties Of The Trigonometric FunctionsChapter 5.4 - Graphs Of The Sine And Cosine FunctionsChapter 5.5 - Graphs Of The Tangent, Cotangent, Cosecant, And Secant FunctionsChapter 5.6 - Phase Shift; Sinusoidal Curve FittingChapter 6 - Analytic TrigonometryChapter 6.1 - The Inverse Sine, Cosine, And Tangent FunctionsChapter 6.2 - The Inverse Trigonometric Functions (continued)Chapter 6.3 - Trigonometric EquationsChapter 6.4 - Trigonometric IdentitiesChapter 6.5 - Sum And Difference FormulasChapter 6.6 - Double-angle And Half-angle FormulasChapter 6.7 - Product-to-sum And Sum-to-product FormulasChapter 7 - Applications Of Trigonometric FunctionsChapter 7.1 - Right Triangle Trigonometry; ApplicationsChapter 7.2 - The Law Of SinesChapter 7.3 - The Law Of CosinesChapter 7.4 - Area Of A TriangleChapter 7.5 - Simple Harmonic Motion; Damped Motion; Combining WavesChapter 8 - Polar Coordinates; VectorsChapter 8.1 - Polar CoordinatesChapter 8.2 - Polar Equations And GraphsChapter 8.3 - The Complex Plane; De Moivre’s TheoremChapter 8.4 - VectorsChapter 8.5 - The Dot ProductChapter 8.6 - Vectors In SpaceChapter 8.7 - The Cross ProductChapter 9 - Analytic GeometryChapter 9.2 - The ParabolaChapter 9.3 - The EllipseChapter 9.4 - The HyperbolaChapter 9.5 - Rotation Of Axes; General Form Of A ConicChapter 9.6 - Polar Equations Of ConicsChapter 9.7 - Plane Curves And Parametric EquationsChapter 10 - Systems Of Equations And InequalitiesChapter 10.1 - Systems Of Linear Equations: Substitution And EliminationChapter 10.2 - Systems Of Linear Equations: MatricesChapter 10.3 - Systems Of Linear Equations: DeterminantsChapter 10.4 - Matrix AlgebraChapter 10.5 - Partial Fraction DecompositionChapter 10.6 - Systems Of Nonlinear EquationsChapter 10.7 - Systems Of InequalitiesChapter 10.8 - Linear ProgrammingChapter 11 - Sequences; Induction; The Binomial TheoremChapter 11.1 - SequencesChapter 11.2 - Arithmetic SequencesChapter 11.3 - Geometric Sequences; Geometric SeriesChapter 11.4 - Mathematical InductionChapter 11.5 - The Binomial TheoremChapter 12 - Counting And ProbabilityChapter 12.1 - CountingChapter 12.2 - Permutations And CombinationsChapter 12.3 - ProbabilityChapter 13 - A Preview Of Calculus: The Limit, Derivative, And Integral Of A FunctionChapter 13.1 - Finding Limits Using Tables And GraphsChapter 13.2 - Algebra Techniques For Finding LimitsChapter 13.3 - One-sided Limits; Continuous FunctionsChapter 13.4 - The Tangent Problem; The DerivativeChapter 13.5 - The Area Problem; The IntegralChapter A.1 - Algebra EssentialsChapter A.2 - Geometry EssentialsChapter A.3 - PolynomialsChapter A.4 - Factoring PolynomialsChapter A.5 - Synthetic DivisionChapter A.6 - Rational ExpressionsChapter A.7 - Nth Roots; Rational ExponentsChapter A.8 - Solving EquationsChapter A.9 - Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job ApplicationsChapter A.10 - Interval Notation; Solving InequalitiesChapter A.11 - Complex NumbersChapter B.1 - The Viewing RectangleChapter B.2 - Using A Graphing Utility To Graph EquationsChapter B.3 - Using A Graphing Utility To Locate Intercepts And Check For SymmetryChapter B.5 - Square Screens
Sample Solutions for this Textbook
We offer sample solutions for Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+) homework problems. See examples below:
Chapter F, Problem 1CPChapter 1, Problem 1REChapter 2, Problem 1REChapter 3, Problem 1REChapter 4, Problem 1REChapter 5, Problem 1REChapter 6, Problem 1REChapter 7, Problem 1REChapter 8, Problem 1RE
Chapter 9, Problem 1REGiven information: The system, {2x−y=5 5x+2y=8 Explanation: To solve the system equations by using...Chapter 11, Problem 1REGiven: The set {Dave, Joanne, Erica}. Calculation: The set {Dave, Joanne, Erica}. Subsets = ∅, {...Chapter 13, Problem 1REGiven Information: The given rational number {−3,0,2,65,π}. Explanation: Integers are the set of...
More Editions of This Book
Corresponding editions of this textbook are also available below:
Precalculus: Concepts Through Functions, A Unit Circle Approach To Trigonometry, A Corequisite Solution - 18-week Access Card
4th Edition
ISBN: 9780135874592
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
4th Edition
ISBN: 9780134686974
MyLab Math with Pearson eText -- Standalone Access Card -- for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (4th Edition)
4th Edition
ISBN: 9780134852218
PRECALCULUS:CONCEPTS...-MYLAB+ETEXT
4th Edition
ISBN: 9780135874738
PRECALCULUS:CONCEPTS...(LL)-W/MYMATHLAB
4th Edition
ISBN: 9780134856520
Precalculus Format: Unbound (saleable)
4th Edition
ISBN: 9780134689852
PRECALCULUS: CONCEPTS THROUGH FUNCTIONS
4th Edition
ISBN: 9780135239902
PRECALCULUS:CONCEPTS...>LL< W/ACCESS
4th Edition
ISBN: 9780136167020
PRECALCULUS:CONC.THRU FUNCTIONS W/ACCES
4th Edition
ISBN: 9780136166962
Mylab Math With Pearson Etext -- 24-month Standalone Access Card -- For Precalculus: Concepts Through Functions, A Unit Circle Approach To Trigonometry, A Corequisite Solution (4th Edition)
4th Edition
ISBN: 9780135874653
Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry Plus MyLab Math with eText -- Access Card Package (4th Edition) (What's New in Precalculus)
4th Edition
ISBN: 9780134859040
PRECALC. CONCEPTS -MYLAB MATH (18WK)
4th Edition
ISBN: 9780135903742
EBK PRECALCULUS
4th Edition
ISBN: 9780134775173
Pearson eText for Precalculus: Concepts Through Functions, A Right Triangle Approach to Trigonometry -- Instant Access (Pearson+)
4th Edition
ISBN: 9780137399581
PRECAL: CONCEPTS >IA<
4th Edition
ISBN: 9780136710226
PRECALCULUS:CONC LL+MML 18WK PACKAGE
4th Edition
ISBN: 9780136166924
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.