Solutions for Calculus: Early Transcendentals (3rd Edition)
Problem 1QC:
What is the radian measure of a 270 angle? What is the degree measure of a 5/4-rad angle?Problem 2QC:
Evaluate cos (11/6) and sin (5/4).Problem 3QC:
Use sin2+cos2=1 to prove that 1+cot2=csc2.Problem 4QC:
Explain why sin1(sin0)=0, but sin1(sin2)2.Problem 5QC:
Evaluate sec11 and tan11.Problem 2E:
For the given angle corresponding to the point P(4, 3) in the figure, evaluate sin , cos , tan ,...Problem 3E:
A projectile is launched at an angle of above the horizontal with an initial speed of v ft/s and...Problem 4E:
A boat approaches a 50-ft-high lighthouse whose base is at sea level. Let d be the distance between...Problem 6E:
Explain what is meant by the period of a trigonometric function. What are the periods of the six...Problem 8E:
Given that sin=1/5 and =2/5, use trigonometric identities to find the values of tan , cot , sec ,...Problem 9E:
Solve the equation sin = 1, for 0 2.Problem 10E:
Solve the equation sin 2=1, for 02.Problem 11E:
Where is the tangent function undefined?Problem 12E:
What is the domain of the secant function?Problem 13E:
Explain why the domain of the sine function must be restricted in order to define its inverse...Problem 15E:
Evaluate cos1(cos(5/4)).Problem 16E:
Evaluate sin1(sin(11/6)).Problem 17E:
The function tan x is undefined at x = /2. How does this fact appear in the graph of y = tan1 x?Problem 18E:
State the domain and range of sec1 x.Problem 19E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 20E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 21E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 22E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 23E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 24E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 25E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 26E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 27E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 28E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 29E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 30E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 31E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 32E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 33E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 34E:
Evaluating trigonometric functions Without using a calculator, evaluate the following expressions or...Problem 43E:
Solving trigonometric equations Solve the following equations. 43. cos 3x = sin 3x, 0 x 2Problem 47E:
Projectile range A projectile is launched from the ground at an angle above the horizontal with an...Problem 48E:
Projectile range A projectile is launched from the ground at an angle above the horizontal with an...Problem 49E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 50E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 51E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 52E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 53E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 54E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 55E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 56E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 57E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 58E:
Inverse sines and cosines Without using a calculator, evaluate the following expressions or state...Problem 59E:
Using right triangles Use a right-triangle sketch to complete the following exercises. 59.Suppose...Problem 60E:
Using right triangles Use a right-triangle sketch to complete the following exercises. 60.Suppose...Problem 61E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 62E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 63E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 64E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 65E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 66E:
Right-triangle relationships Draw a right triangle to simplify the given expressions. Assume x 0....Problem 67E:
Trigonometric identities 29. Prove that sec=1cos.Problem 68E:
Trigonometric identities 30. Prove that tan=sincos.Problem 75E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 77E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 80E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 81E:
Evaluating inverse trigonometric functions Without using a calculator, evaluate or simplify the...Problem 83E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 84E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 85E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 86E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 87E:
Right-triangle relationships Use a right triangle to simplify the given expressions. Assume x 0....Problem 89E:
Right-triangle pictures Express in terms of x using the inverse sine, inverse tangent, and inverse...Problem 90E:
Right-triangle pictures Express in terms of x using the inverse sine, inverse tangent, and inverse...Problem 91E:
Explain why or why not Determine whether the following statements are true and give an explanation...Problem 92E:
One function gives all six Given the following information about one trigonometric function,...Problem 93E:
One function gives all six Given the following information about one trigonometric function,...Problem 94E:
One function gives all six Given the following information about one trigonometric function,...Problem 95E:
One function gives all six Given the following information about one trigonometric function,...Problem 97E:
Amplitude and period Identify the amplitude and period of the following functions. 89. g() = 3 cos...Problem 99E:
Amplitude and period Identify the amplitude and period of the following functions. 91. q(x) = 3.6...Problem 100E:
Law of cosines Use the figure to prove the law of cosines (which is a generalization of the...Problem 101E:
Little-known fact The shortest day of the year occurs on the winter solstice (near December 21) and...Problem 102E:
Anchored sailboats A sailboat named Ditl is anchored 200 feet north and 300 feet east of an observer...Problem 103E:
Area of a circular sector Prove that the area of a sector of a circle of radius r associated with a...Problem 104E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 105E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 106E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 107E:
Graphing sine and cosine functions Beginning with the graphs of y = sin x or y = cos x, use shifting...Problem 109E:
Designer functions Design a sine function with the given properties. 97. It has a period of 24 hr...Problem 110E:
Field goal attempt Near the end of the 1950 Rose Bowl football game between the University of...Problem 111E:
A surprising result The Earth is approximately circular in cross section, with a circumference at...Problem 112E:
Daylight function for 40 N Verify that the function D(t)=2.8sin(2365(t81))+12 has the following...Problem 113E:
Block on a spring A light block hangs at rest from the end of a spring when it is pulled down 10 cm...Problem 114E:
Viewing angles An auditorium with a flat floor has a large flat-panel television on one wall. The...Browse All Chapters of This Textbook
Chapter 1 - FunctionsChapter 1.1 - Review Of FunctionsChapter 1.2 - Representing FunctionsChapter 1.3 - Inverse, Exponential, And Logarithmic FunctionsChapter 1.4 - Trigonometric Functions And Their InversesChapter 2 - LimitsChapter 2.1 - The Idea Of LimitsChapter 2.2 - Definitions Of LimitsChapter 2.3 - Techniques For Computing LimitsChapter 2.4 - Infinite Limits
Chapter 2.5 - Limits At InfinityChapter 2.6 - ContinuityChapter 2.7 - Precise Definitions Of LimitsChapter 3 - DerivativesChapter 3.1 - Introducing The DerivativesChapter 3.2 - The Derivative As A FunctionChapter 3.3 - Rules Of DifferentiationChapter 3.4 - The Product And Quotient RulesChapter 3.5 - Derivatives Of Trigonometric FunctionsChapter 3.6 - Derivatives As A Rates Of ChangeChapter 3.7 - The Chain RuleChapter 3.8 - Implicit DifferentiationChapter 3.9 - Derivatives Of Logarithmic And Exponential FunctionsChapter 3.10 - Derivatives Of Inverse Trigonometric FunctionsChapter 3.11 - Related RatesChapter 4 - Applications Of The DerivativeChapter 4.1 - Maxima And MinimaChapter 4.2 - Mean Value TheoremChapter 4.3 - What Derivative Tell UsChapter 4.4 - Graphing FunctionsChapter 4.5 - Optimization ProblemsChapter 4.6 - Linear Approximation And DifferentialsChapter 4.7 - L'hopital's RuleChapter 4.8 - Newton's MethodChapter 4.9 - AntiderivativesChapter 5 - IntegrationChapter 5.1 - Approximating Areas Under CurvesChapter 5.2 - Definite IntegralsChapter 5.3 - Fundamental Theorem Of CalculusChapter 5.4 - Working With IntegralsChapter 5.5 - Substitution RuleChapter 6 - Applications Of IntegrationChapter 6.1 - Velocity And Net ChangeChapter 6.2 - Regions Between CurvesChapter 6.3 - Volume By SlicingChapter 6.4 - Volume By ShellsChapter 6.5 - Length Of CurvesChapter 6.6 - Surface AreaChapter 6.7 - Physical ApplicationsChapter 7 - Logarithmic And Exponential, And Hyperbolic FunctionsChapter 7.1 - Logarithmic And Exponential Functions RevisitedChapter 7.2 - Exponential ModelsChapter 7.3 - Hyperbolic FunctionsChapter 8 - Integration TechniquesChapter 8.1 - Basic ApproachesChapter 8.2 - Integration By PartsChapter 8.3 - Trigonometric IntegralsChapter 8.4 - Trigonometric SubstitutionsChapter 8.5 - Partial FractionsChapter 8.6 - Integration StrategiesChapter 8.7 - Other Methods Of IntegrationChapter 8.8 - Numerical IntegrationChapter 8.9 - Improper IntegralsChapter 9 - Differential EquationsChapter 9.1 - Basic IdeasChapter 9.2 - Direction Fields And Euler's MethodChapter 9.3 - Separable Differential EquationsChapter 9.4 - Special First-order Linear Differential EquationsChapter 9.5 - Modeling With Differential EquationsChapter 10 - Sequences And Infinite SeriesChapter 10.1 - An OverviewChapter 10.2 - SequencesChapter 10.3 - Infinite SeriesChapter 10.4 - The Divergence And Integral TestsChapter 10.5 - Comparison TestsChapter 10.6 - Alternating SeriesChapter 10.7 - The Ration And Root TestsChapter 10.8 - Choosing A Convergence TestChapter 11 - Power SeriesChapter 11.1 - Approximating Functions With PolynomialsChapter 11.2 - Properties Of Power SeriesChapter 11.3 - Taylor SeriesChapter 11.4 - Working With Taylor SeriesChapter 12 - Parametric And Polar CurvesChapter 12.1 - Parametric EquationsChapter 12.2 - Polar CoordinatesChapter 12.3 - Calculus In Polar CoordinatesChapter 12.4 - Conic SectionsChapter 13 - Vectors And The Geometry Of SpaceChapter 13.1 - Vectors In The PlaneChapter 13.2 - Vectors In Three DimensionsChapter 13.3 - Dot ProductsChapter 13.4 - Cross ProductsChapter 13.5 - Lines And Planes In SpaceChapter 13.6 - Cylinders And Quadric SurfacesChapter 14 - Vector-valued FunctionsChapter 14.1 - Vector-valued FunctionsChapter 14.2 - Calculus Of Vector-valued FunctionsChapter 14.3 - Motion In SpaceChapter 14.4 - Length Of CurvesChapter 14.5 - Curvature And Normal VectorsChapter 15 - Functions Of Several VariablesChapter 15.1 - Graphs And Level CurvesChapter 15.2 - Limits And ContinuityChapter 15.3 - Partial DerivativesChapter 15.4 - The Chain RuleChapter 15.5 - Directional Derivatives And The GradientChapter 15.6 - Tangent Planes And Linear ProblemsChapter 15.7 - Maximum/minimum ProblemsChapter 15.8 - Lagrange MultipliersChapter 16 - Multiple IntegrationChapter 16.1 - Double Integrals Over Rectangular RegionsChapter 16.2 - Double Integrals Over General RegionsChapter 16.3 - Double Integrals In Polar CoordinatesChapter 16.4 - Triple IntegralsChapter 16.5 - Triple Integrals In Cylindrical And Spherical CoordinatesChapter 16.6 - Integrals For Mass CalculationsChapter 16.7 - Change Of Variables In Multiple IntegralsChapter 17 - Vector CalculusChapter 17.1 - Vector FieldsChapter 17.2 - Line IntegralsChapter 17.3 - Conservative Vector FieldsChapter 17.4 - Green's TheoremChapter 17.5 - Divergence And CurlChapter 17.6 - Surface IntegralsChapter 17.7 - Stokes' TheoremChapter 17.8 - Divergence TheoremChapter B - Algebra ReviewChapter C - Complex Numbers
Sample Solutions for this Textbook
We offer sample solutions for Calculus: Early Transcendentals (3rd Edition) homework problems. See examples below:
Chapter 1, Problem 1REChapter 2, Problem 1REChapter 3, Problem 1REChapter 4, Problem 1REChapter 5, Problem 1REChapter 6, Problem 1REChapter 7, Problem 1REChapter 8, Problem 1REChapter 9, Problem 1RE
Chapter 10, Problem 1REChapter 11, Problem 1REChapter 12, Problem 1REChapter 13, Problem 1REThe given vector valued function is r(t)=〈cost,et,t〉+C. Substitute t=0 in the vector as follows....The given function is, g(x,y)=ex+y. Let ex+y=k. Take log on both sides. ex+y=kln(ex+y)=ln(k)x+y=lnk...Chapter 16, Problem 1REChapter 17, Problem 1REChapter B, Problem 1EChapter C, Problem 1E
More Editions of This Book
Corresponding editions of this textbook are also available below:
Mylab Math With Pearson Etext -- 18 Week Standalone Access Card -- For Calculus: Early Transcendentals With Integrated Review
3rd Edition
ISBN: 9780135904190
Calculus, Early Transcendentals, Loose-leaf Edition Plus Mylab Math With Pearson Etext - 18-week Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780136207702
CALCULUS: EARLY TRANSCENDENTALS, EBK W/
3rd Edition
ISBN: 9780135960349
CALCULUS:EARLY TRANSCENDENTALS
3rd Edition
ISBN: 9780136679103
Calculus Early Transcendentals 3rd.edition I.r.c.
3rd Edition
ISBN: 9780134766843
MYLABMATHPLUS F/CALCULUS:EARLY TRANSCE
19th Edition
ISBN: 9781323905555
CALCULUS 1 COMPLETE PACKAGE FOR NCAT
2nd Edition
ISBN: 9780135358016
CALCULUS:EARLY TRANSCEND.(LL)-PACKAGE
3rd Edition
ISBN: 9780135182536
CALCULUS BKS ALC ED + MYLAB W/MAPLE SAC
3rd Edition
ISBN: 9780136756286
EP CALCULUS:EARLY TRANS.-MYLABMATH ACC.
3rd Edition
ISBN: 9780135873311
Calculus, Early Transcendentals, Single Variable Loose-Leaf Edition Plus MyLab Math with Pearson eText - 18-Week Access Card Package
3rd Edition
ISBN: 9780136207764
CALCULUS:EARLY TRANSCEND.-STUD.SOLN.MAN
3rd Edition
ISBN: 9780134770482
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
3rd Edition
ISBN: 9780134995991
CALCULUS:EARLY TRANSCEND W/MML >CI<
15th Edition
ISBN: 9781269748520
Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134770468
CALCULUS:EARLY TRANSCENDENTALS-PACKAGE
3rd Edition
ISBN: 9780135182543
CAL 1 COMPLETE PACKAGE W/ MYLAB
2nd Edition
ISBN: 9780136564133
CAL 1 WORKBOOK W/MYLAB
2nd Edition
ISBN: 9780136567905
Calculus: Early Transcendentals, Books A La Carte Edition (3rd Edition)
3rd Edition
ISBN: 9780134770512
MyLab Math with Pearson eText -- Standalone Access Card -- for Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780134856926
EP CALCULUS:EARLY TRANS.-MYLABMATH 18 W
3rd Edition
ISBN: 9780135962138
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
3rd Edition
ISBN: 9780134996684
CALCULUS: EARLY TRANSCENDENTALS (LCPO)
3rd Edition
ISBN: 9780134856971
Student Solutions Manual, Multivariable For Calculus And Calculus: Early Transcendentals
1st Edition
ISBN: 9780321664112
Calculus (briggs/cochran Calculus)
1st Edition
ISBN: 9780321336118
Calculus
1st Edition
ISBN: 9780321716057
Calculus: Early Transcendentals (briggs/cochran/gillett Calculus 2e)
1st Edition
ISBN: 9780321570567
Student Solutions Manual, Single Variable For Calculus: Early Transcendentals
1st Edition
ISBN: 9780321664105
Student Solutions Manual, Single Variable for Calculus: Early Transcendentals
2nd Edition
ISBN: 9780321954329
Calculus: Early Transcendentals, 2nd Edition
2nd Edition
ISBN: 9780321965165
Calculus: Early Transcendentals, Books a la Carte Edition (2nd Edition)
2nd Edition
ISBN: 9780321954428
MYLAB CALCULUS: EARLY TRANSC FOR EFSC
18th Edition
ISBN: 9781323910672
Calculus Early Transcendentals
2nd Edition
ISBN: 9781292062310
Calculus: Early Transcendentals, Books a la Carte Plus MyLab Math/MyLab Statistics Student Access Kit (2nd Edition)
2nd Edition
ISBN: 9780321977298
CALCULUS EARLY TRANSCEDENTALS >CUSTOM<
2nd Edition
ISBN: 9781323110935
Calculus Early Transcendentals Second Custom Edition University Of Mississippi
2nd Edition
ISBN: 9781323142066
Calculus: Early Transcendentals (Custom)
15th Edition
ISBN: 9781269752046
Calculus: Early Transcendentals (2nd Edition)
2nd Edition
ISBN: 9780321947345
CODE/CALC ET 3-HOLE
2nd Edition
ISBN: 9781323178522
Calculus
2nd Edition
ISBN: 9780321954404
Related Calculus Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.