
Concept explainers
The meaning of quantum realm and to point out the five major ideas coming from laws of

Answer to Problem 1EAP
Solution:
Quantum realm is the length of the scales where
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Explanation of Solution
Introduction:
Quantum mechanics is the branch of physics that deals with the phenomenon at the nano scopic level and was introduced by De-Broglie. The scale under which the quantum mechanical effects are studied is known as quantum realm. There are many processes that are explained under this scale. For example, electron tunnelling, double slit experiment, molecular electronics, organic semiconductors etc originate from this scale and become prominent.
Quantum realm is the lengths of the scales where angular momentum is not considered as continuous quantity and its quantization must also be accounted for. These terms are used when we deal in microscopic level and we cannot ignore the tunnelling effect, wave- particle duality that has its significant effects i.e. quantum mechanical effects.
Five major ideas coming from laws of quantum mechanics are:
- We all know that matter is something which is composed of small particles known as atoms. And in our nature we have the existence of two particles that are fermions and bosons. Fermions are two types of atoms i.e. leptons are quarks. Bosons are the particles which are associated with light which is made of photons.
- For every particle there is also the existence of an antiparticle. These antiparticles are the constituents of the antimatter which can be easily prepared in a laboratory. Whenever a particle and the antiparticle meet, there is the production of a lot of energy.
- There are four fundamental forces in nature i.e. the strong force, the weak force, gravitational force and the
electromagnetic force which are seen when interaction between particles take place. - Wave particle duality, the wave and particle are not different from each other.
- Though quantum realm is studied under small scale but its effects have astronomical significance. Some phenomenon’s like Pauli’s exclusion principle, tunnelling etc. have the impact on the life, structure and energy production in the star.
Conclusion:
Thus, quantum realm is the lengths of the scales where angular momentum is not considered as a continuous quantity and its quantization must also be accounted for.
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Want to see more full solutions like this?
Chapter S4 Solutions
EBK THE COSMIC PERSPECTIVE
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





