Concept explainers
The meaning of quantum realm and to point out the five major ideas coming from laws of
Answer to Problem 1EAP
Solution:
Quantum realm is the length of the scales where
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Explanation of Solution
Introduction:
Quantum mechanics is the branch of physics that deals with the phenomenon at the nano scopic level and was introduced by De-Broglie. The scale under which the quantum mechanical effects are studied is known as quantum realm. There are many processes that are explained under this scale. For example, electron tunnelling, double slit experiment, molecular electronics, organic semiconductors etc originate from this scale and become prominent.
Quantum realm is the lengths of the scales where angular momentum is not considered as continuous quantity and its quantization must also be accounted for. These terms are used when we deal in microscopic level and we cannot ignore the tunnelling effect, wave- particle duality that has its significant effects i.e. quantum mechanical effects.
Five major ideas coming from laws of quantum mechanics are:
- We all know that matter is something which is composed of small particles known as atoms. And in our nature we have the existence of two particles that are fermions and bosons. Fermions are two types of atoms i.e. leptons are quarks. Bosons are the particles which are associated with light which is made of photons.
- For every particle there is also the existence of an antiparticle. These antiparticles are the constituents of the antimatter which can be easily prepared in a laboratory. Whenever a particle and the antiparticle meet, there is the production of a lot of energy.
- There are four fundamental forces in nature i.e. the strong force, the weak force, gravitational force and the
electromagnetic force which are seen when interaction between particles take place. - Wave particle duality, the wave and particle are not different from each other.
- Though quantum realm is studied under small scale but its effects have astronomical significance. Some phenomenon’s like Pauli’s exclusion principle, tunnelling etc. have the impact on the life, structure and energy production in the star.
Conclusion:
Thus, quantum realm is the lengths of the scales where angular momentum is not considered as a continuous quantity and its quantization must also be accounted for.
Five major ideas coming from laws of quantum mechanics are:
- Atoms are made of quarks and leptons
- Antimatter is real
- Presence of the basic forces between the particles
- Wave particle duality
- Astronomical consequences.
Want to see more full solutions like this?
Chapter S4 Solutions
EBK COSMIC PERSPECTIVE, THE
- 3. A measurement taken from the UW Jacobson Observatory (Latitude: 47.660503°, Longitude: -122.309424°, Altitude: 220.00 feet) when its local sidereal time is 120.00° makes the following observations of a space object (Based on Curtis Problems 5.12 + 5.13): Azimuth: 225.00° Azimuth rate: 2.0000°/s. Elevation: 75.000° Elevation rate: -0.5000°/s Range: 1500.0 km Range rate: -1.0000 km/s a. What are the r & v vectors (the state vector) in geocentric coordinates? (Answer r = [-2503.47 v = [17.298 4885.2 5.920 5577.6] -2.663]) b. Calculate the orbital elements of the satellite. (For your thoughts: what type of object would this be?) (Partial Answer e = 5.5876, 0=-13.74°) Tip: use Curtis algorithms 5.4 and 4.2.arrow_forwardConsider an isotope with an atomic number of (2(5+4)) and a mass number of (4(5+4)+2). Using the atomic masses given in the attached table, calculate the binding energy per nucleon for this isotope. Give your answer in MeV/nucleon and with 4 significant figures.arrow_forwardA: VR= 2.4 cm (0.1 V/cm) = 0.24 V What do Vector B an C represent and what are their magnitudesarrow_forward
- 4. Consider a cubesat that got deployed below the ISS and achieved a circular orbit of 410 km altitude with an inclination of 51.600°. What is the spacing, in kilometers, between successive ground tracks at the equator: a. Ignoring J2 (Earth's oblateness) effects b. Accounting for J2 effects c. Compare the two results and comment [Partial Answer: 35.7km difference]arrow_forwardplease solve and explainarrow_forwardTwo ice skaters, both of mass 68 kgkg, approach on parallel paths 1.6 mm apart. Both are moving at 3.0 m/sm/s with their arms outstretched. They join hands as they pass, still maintaining their 1.6 mm separation, and begin rotating about one another. Treat the skaters as particles with regard to their rotational inertia. a) What is their common angular speed after joining hands? Express your answer in radians per second. b) Calculate the change in kinetic energy for the process described in a). Express your answer with the appropriate units. c) If they now pull on each other’s hands, reducing their radius to half its original value, what is their common angular speed after reducing their radius? Express your answer in radians per second. d) Calculate the change in kinetic energy for the process described in part c). Express your answer with the appropriate units.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON