
Concept explainers
The goals of taking this course and discuss them with your group members.

Explanation of Solution
The main goals of taking this course can be summarized as below:
(1) Linear equations and Inequalities in one variable:
After learning this topic, if we have given a linear equation with one variable,
- We will be able to clear fraction
- We will be able to use the distributive property
- We will be able to use the addition and multiplication properties
If we have given a literal equation, then we'll be able to
- Solve for any given variable
If we have given an inequality with one variable, then we'll be able to:
- Solve the inequality algebraically
- Describe the solution of inequality using inequality notation and interval notation
- Solve and graph the solutions of absolute value inequality
(2) Linear equations in two variables and Functions:
After learning this topic, if we have given a linear equation with two variable, we will be able to:
- Understand and Transform the equation of line in different form like: slope-intercept form,
point-slope form or standard form - Identify the slope and y-intercept of any equation of line
- Graph the equation of line using slope and y-intercept
If we have given an inequality with two variables, then we will be able to:
- Solve the solution graphically
- Write the solution in interval notation using the parentheses and square bracket as per the inequality sign
If we have given a function in any of the algebraic, table, graph or in context form, we will be able to:
- Identify a function as a relationship of the dependent variable and independent variable
- Demonstrate the proper use of the function notation
- Identify domain and range of the function from algebraic equation or from the graph
- Evaluate the function value at any point
- Identify dependent and independent variables in context
(3) System of Linear equations and Inequalities:
After learning this topic, if we have given a system of linear equation with two variable, we will be able to:
- Solve the system of equation by substitution method, addition method or graphing method
- Compare the real life models expressed by linear functions
- Identify the number of solutions, that is, one solution, infinitely many solutions or no solution
- Interpret the solution of system given in context
If we have given linear inequalities with two variables, we will be able to:
- Solve the equalities using the graphing method
- Solve the compound inequalities
If we have given linear inequalities with three variables, we will be able to:
- Solve the system of equations algebraically
- Solve the system of equations using matrices
(4) Polynomials:
After learning this topic, if we have given polynomials, we will be able to:
- Identify the degree of the polynomial and the like terms in the polynomial
- Perform the basic operations on polynomials, like addition, subtraction, multiplication and division of polynomials
- Factor by grouping
- Factor trinomials using splitting the middle term
- Factor binomials and trinomials
- solve equations using zero product rule and square root property
(5) Rational Expressions and Rational equations:
After learning this topic, if we have given a rational expression or equation, we will be able to:
- Simplify the rational expressions and equations
- Perform the basic operations like addition, subtraction, multiplication and division of rational expressions
- Simplify the complex fractions
(6) Radicals and
After learning this topic, if we have given a radical number or expression, we will be able to:
- Simplify the radical expression using the exponent rules
- Perform the basic operations, like addition, subtraction, multiplication and division of radical expressions
- Rationalize the radicals in rational expressions
- Change simple rational exponents to radical form and vice versa
If we have given a complex number, then we will be able to
- Write the complex number in standard form
- Perform the basic operations, like addition, subtraction, multiplication and division of complex numbers
- Find the complex conjugates to divide the complex numbers
(7)
After learning this topic, if we have given a quadratic equation or expression, we will be able to:
- Factor the quadratic equations
- Solve the quadratic equation to find the zeros of the equation
- Solve the quadratic equations using different methods, like quadratic formula, splitting the middle term, completing the square method or graphically
- Identify the shape of the parabola by identifying the dependent and independent variable
- Identify the vertex of the parabola
(8) Exponential and Logarithmic functions:
After learning this topic, if we have given an exponential function, we will be able to:
- Identify the growth or decay factor
- Determine the growth or decay rates
- Identify the exponential growth/decay and continuous growth/decay
- Identify the increasing or decreasing graph of given exponential function
If we have given a logarithmic equation, we will be able to:
- Expand the logarithmic expression using the logarithmic rules
- Combine the logarithmic expression using the logarithmic rules
- Differentiate between regular log and natural log
- Graph the logarithmic functions
(9)
After learning this topic, we will be able to:
- Find the distance between any two points, midpoint of line segment connecting two points
- Identify and differentiate between different conics, like
circle , parabola, ellipse and hyperbola - Solve the system of non linear equations with two variables
- Graph the solutions of two non linear inequalities
(9)Binomial expansions, Sequences and Series:
After learning this topic, we will be able to:
- Expand a binomial of higher order
- Identify the series and sequences and their general terms
- Use of Arithmetic and Geometric sequence and series in real life applications.
Want to see more full solutions like this?
- 1. Let 15 -14 A = -10 9 13-12 -8 7 11 15 -14 13 -12 -6 and B = -10 9 -8 7 -6 5 -4 3 -2 E 5 -4 3 -2 1 Explicitly give the values of A2,3, A1,5, and B1,4- Is A a 5 x 3 matrix? Explain your answer. Are A and B (mathematically) equal? Explain your answer.arrow_forwardGiven the following set X = {2, 4, 6, 8} and Y = {1, 2, 3}, explicitly give (e.g., write down the sets with numerical entries) of the outputs of the following requested set operations: (a) [2 points] XUY (Union) (b) [2 points] XY (Intersection) (c) [3 points] X\Y (Difference) (d) [3 points] XAY (Symmetric Difference)arrow_forwardFor what values of k will the equation (k + 1)x² + 6kx + 2k² - x = 0 have: a) one root equal zero b) one root the reciprocal of the other c) roots numerically equal but of opposite signarrow_forward
- 1) Find The inverse The domain of m(x) = tion and of the function The inverse function 3- √x-aarrow_forwardGraph the following function. Please also graph the asymptote. Thank you.arrow_forwardFile Edit View History Bookmarks Profiles Tab Window Window Help Things Quadratics! Part 1 X SM◄))) 61% Fri 25 student.desmos.com/activitybuilder/instance/67b739e7356cae7898fd0dbd/student/67b8f115811d42186c239e23#screenid=41a95 ngs Quadratics! Part 1: Parabolas Mitchell 30 30 foo feet 20- 20 10 0 -10 FEB 21 3 10 10 80 FS F3 X Intercepts #2 20 20 Approximately how tall is the shooter? > Which intercept did you use to solve the above problem? x-intercept y-intercept 30 feet Explain your thinking. 1 √E Submit 00000 acBook stv 399 ? DOD 000 F4 % 5 W E R F5 A F6 F7 F9 & * 7 8 9 0 Y U C 014arrow_forward
- The table below shows the acreage, number of visitors, and total revenue of state parks and recreational areas in Massachusetts, New York, and Vermont in 2010. State Acreage (in thousands) Visitors (in thousands) Revenue (in thousands) Massachusetts 350 35,271 $12,644 New York 1,354 56,322 $85,558 Vermont 69 758 $10,969 Select the three true statements based on the data in the table. A. Vermont had the highest revenue per acre of state parks and recreational areas. B. Vermont had approximately 11 visitors per acre of state parks and recreational areas. C. New York had the highest number of visitors per acre of state parks and recreational areas. D. Massachusetts had approximately 36 visitors per acre of state parks and recreational areas. E. New York had revenue of approximately $63.19 per acre of state parks and recreational areas. F. Massachusetts had revenue of approximately $0.03 per acre of state parks and recreational areas.arrow_forwarda) show that the empty set and sigletonset are convex set. 6) show that every sub space of linear space X is convex but the convers heed not be true. c) let Mand N be two convex set of a linear Space X and KEF Show that MUN is conevex and (ii) M-N is convex or hot A and is MSN or NSM show that MUN convex or not, 385arrow_forwardI write with prove one-to-one linear Sanction but not onto Lexample.) b) write with Prove on to linear function but not oh-to-on (example). c) write with prove example x=y St Xandy two linear space over Sielad F.arrow_forward
- Find the sample space. Sunscreen SPF 10, 15, 30, 45, 50 Type Lotion, Spray, Gelarrow_forwardFor each graph below, state whether it represents a function. Graph 1 24y Graph 2 Graph 3 4 2 -8 -6 -4 -2 -2 2 4 6 Function? ○ Yes ○ No ○ Yes ○ No Graph 4 Graph 5 8 Function? Yes No Yes No -2. ○ Yes ○ No Graph 6 4 + 2 4 -8 -6 -4 -2 2 4 6 8 Yes -4++ Noarrow_forwardPractice k Help ises A 96 Anewer The probability that you get a sum of at least 10 is Determine the number of ways that the specified event can occur when two number cubes are rolled. 1. Getting a sum of 9 or 10 3. Getting a sum less than 5 2. Getting a sum of 6 or 7 4. Getting a sum that is odd Tell whether you would use the addition principle or the multiplication principle to determine the total number of possible outcomes for the situation described. 5. Rolling three number cubes 6. Getting a sum of 10 or 12 after rolling three number cubes A set of playing cards contains four groups of cards designated by color (black, red, yellow, and green) with cards numbered from 1 to 14 in each group. Determine the number of ways that the specified event can occur when a card is drawn from the set. 7. Drawing a 13 or 14 9. Drawing a number less than 4 8. Drawing a yellow or green card 10. Drawing a black, red, or green car The spinner is divided into equal parts. Find the specified…arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





