Developmental Mathematics (9th Edition)
9th Edition
ISBN: 9780321997173
Author: Marvin L. Bittinger, Judith A. Beecher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter O, Problem 3ES
To determine
To calculate: The expression
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 3
over a field K.
In this question, MË(K) denotes the set of n × n matrices
(a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is
equivalent to A-¹? Justify your answer.
(b) Let B be given by
8
B = 0 7 7
0 -7 7
Working over the field F2 with 2 elements, compute the rank of B as an element
of M2(F2).
(c) Let
1
C
-1 1
[4]
[6]
and consider C as an element of M3(Q). Determine the minimal polynomial
mc(x) and hence, or otherwise, show that C can not be diagonalised.
[7]
(d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write
down all the eigenvalues. Show your working.
[8]
16. Solve the given differential equation:
y" + 4y sin (t)u(t 2π),
-
y(0) = 1, y'(0) = 0
Given,
1
(x² + 1)(x²+4)
1/3
-1/3
=
+
x²+1 x² +4
Send your answer in
pen and paper don't r
eputed ur self down
Don't send the same
previous answer that
was Al generated
Don't use any Al tool
show ur answer in pe
n and paper then take
R denotes the field of real numbers, Q denotes the field of rationals, and
Fp denotes the field of p elements given by integers modulo p. You may refer to general
results from lectures.
Question 1
For each non-negative integer m, let R[x]m denote the
vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m.
x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent
(a) Let vi = x, V2 =
list in R[x] 3.
(b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4)
is a basis of R[x] 3.
[8]
[6]
(c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a
linear map.
[6]
(d) Write down the matrix for the map ƒ defined in (c) with respect to the basis
(2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3.
[5]
Chapter O Solutions
Developmental Mathematics (9th Edition)
Ch. O - Prob. 1DECh. O - Prob. 2DECh. O - Prob. 3DECh. O - Prob. 4DECh. O - Prob. 5DECh. O - Prob. 6DECh. O - Prob. 7DECh. O - Prob. 8DECh. O - Prob. 9DECh. O - Prob. 10DE
Ch. O - Prob. 11DECh. O - Prob. 12DECh. O - Prob. 13DECh. O - Prob. 14DECh. O - Prob. 15DECh. O - Prob. 16DECh. O - Prob. 17DECh. O - Prob. 18DECh. O - Simplify.
19.
Ch. O - Prob. 20DECh. O - Prob. 21DECh. O - Prob. 22DECh. O - Prob. 23DECh. O - Prob. 24DECh. O - Prob. 25DECh. O - Find the conjugate.
26.
Ch. O - Prob. 27DECh. O - Prob. 28DECh. O - Prob. 29DECh. O - Prob. 30DECh. O - Prob. 31DECh. O - Prob. 32DECh. O - Prob. 33DECh. O - Prob. 34DECh. O - Prob. 36DECh. O - Prob. 37DECh. O - Prob. 38DECh. O - Prob. 1ESCh. O - Prob. 2ESCh. O - Prob. 3ESCh. O - Prob. 4ESCh. O - Prob. 5ESCh. O - Prob. 6ESCh. O - Prob. 7ESCh. O - Prob. 8ESCh. O - Prob. 9ESCh. O - Prob. 10ESCh. O - Prob. 11ESCh. O - Prob. 12ESCh. O - Prob. 13ESCh. O - Prob. 14ESCh. O - Prob. 15ESCh. O - Prob. 16ESCh. O - Prob. 17ESCh. O - Prob. 18ESCh. O - Prob. 19ESCh. O - Prob. 20ESCh. O - Prob. 21ESCh. O - Prob. 22ESCh. O - Prob. 23ESCh. O - Prob. 24ESCh. O - Prob. 25ESCh. O - Prob. 26ESCh. O - Prob. 27ESCh. O - Prob. 28ESCh. O - Prob. 29ESCh. O - Prob. 30ESCh. O - Prob. 31ESCh. O - Prob. 32ESCh. O - Prob. 33ESCh. O - Prob. 34ESCh. O - Prob. 35ESCh. O - Prob. 36ESCh. O - Prob. 37ESCh. O - Prob. 38ESCh. O - Prob. 39ESCh. O - Prob. 40ESCh. O - Prob. 41ESCh. O - Prob. 42ESCh. O - Prob. 43ESCh. O - Prob. 44ESCh. O - Prob. 45ESCh. O - Prob. 46ESCh. O - Prob. 47ESCh. O - Prob. 48ESCh. O - Prob. 50ESCh. O - Prob. 51ESCh. O - Prob. 52ESCh. O - Prob. 53ESCh. O - Prob. 54ESCh. O - Prob. 55ESCh. O - Prob. 56ESCh. O - Prob. 57ESCh. O - Prob. 58ESCh. O - Prob. 59ESCh. O - Prob. 60ESCh. O - Prob. 61ESCh. O - Prob. 62ESCh. O - Prob. 63ESCh. O - Prob. 64ESCh. O - Prob. 65ESCh. O - Prob. 66ESCh. O - Prob. 67ESCh. O - Prob. 68ESCh. O - Prob. 69ESCh. O - Prob. 70ESCh. O - Prob. 71ESCh. O - Prob. 72ESCh. O - Prob. 73ESCh. O - Prob. 74ESCh. O - Prob. 75ESCh. O - Prob. 76ESCh. O - Prob. 77ESCh. O - Prob. 78ESCh. O - Prob. 79ESCh. O - Prob. 80ESCh. O - Prob. 81ESCh. O - Prob. 82ESCh. O - Prob. 83ESCh. O - Prob. 84ESCh. O - Prob. 85ESCh. O - Prob. 86ESCh. O - Prob. 87ESCh. O - Prob. 88ESCh. O - Prob. 89ESCh. O - Prob. 90ESCh. O - Prob. 91ESCh. O - Prob. 92ESCh. O - Prob. 93ESCh. O - Prob. 94ESCh. O - Prob. 95ESCh. O - Prob. 96ESCh. O - Prob. 97ESCh. O - Prob. 98ESCh. O - Prob. 99ESCh. O - Prob. 100ESCh. O - Prob. 101ESCh. O - Prob. 102ESCh. O - Prob. 103ESCh. O - Prob. 104ESCh. O - Prob. 105ESCh. O - Prob. 106ESCh. O - Prob. 107ESCh. O - Prob. 108ESCh. O - Prob. 109ESCh. O - Prob. 110ESCh. O - Prob. 111ESCh. O - Prob. 112ESCh. O - Prob. 113ESCh. O - Prob. 114ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forwardQuestion 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forward
- Question 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardGood explanation it sure experts solve itarrow_forwardBest explains it not need guidelines okkarrow_forward
- Task number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardTask number: A1.1, A1.7 Topic: Celestial Navigation, Compass - Magnetic and Gyro Activ Determine compass error (magnetic and gyro) using azimuth choosing a suitable celestial body (Sun/ Stars/ Planets/ Moon). Apply variation to find the deviation of the magnetic compass. Minimum number of times that activity should be recorded: 6 (2 each phase) Sample calculation (Azimuth- Planets): On 06th May 2006 at 22h20m 10s UTC, a vessel in position 48°00'N 050°00'E observed Mars bearing 327° by compass. Find the compass error. If variation was 4.0° East, calculate the deviation. GHA Mars (06d 22h): Increment (20m 10s): 089° 55.7' 005° 02.5' v (0.9): (+) 00.3' GHA Mars: 094° 58.5' Longitude (E): (+) 050° 00.0' (plus- since longitude is easterly) LHA Mars: 144° 58.5' Declination (06d 22h): d (0.2): N 024° 18.6' (-) 00.1' Declination Mars: N 024° 18.5' P=144° 58.5' (If LHA<180°, P=LHA) A Tan Latitude/ Tan P A Tan 48° 00' Tan 144° 58.5' A = 1.584646985 N (A is named opposite to latitude, except when…arrow_forwardActiv Determine compass error using amplitude (Sun). Minimum number of times that activity should be performed: 3 (1 each phase) Sample calculation (Amplitude- Sun): On 07th May 2006 at Sunset, a vessel in position 10°00'N 010°00'W observed the Sun bearing 288° by compass. Find the compass error. LMT Sunset: LIT: (+) 00d 07d 18h 00h 13m 40m UTC Sunset: 07d 18h 53m (added- since longitude is westerly) Declination (07d 18h): N 016° 55.5' d (0.7): (+) 00.6' Declination Sun: N 016° 56.1' Sin Amplitude = Sin Declination/Cos Latitude = Sin 016°56.1'/ Cos 10°00' = 0.295780189 Amplitude=W17.2N (The prefix of amplitude is named easterly if body is rising, and westerly if body is setting. The suffix is named same as declination) True Bearing=287.2° Compass Bearing= 288.0° Compass Error = 0.8° Westarrow_forward
- Only sure experts solve it correct complete solutions okkarrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY