
Pearson eText Algebra and Trigonometry: Graphs and Models -- Instant Access (Pearson+)
6th Edition
ISBN: 9780136880172
Author: Marvin Bittinger, Judith Beecher
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter J.7, Problem 9E
To determine
To simplify: The expression
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5) For each function represented by an equation, make a table and plot the corresponding
points to sketch the graph of the function.
(a) y = 75 ()*
220
X
y
200-
-2
180
160
-1
140
0
120
100
1
60
80
2
3
4
x
(b) y = 20 ()*
1
60
40
20
20
0
2
3
65-
-1
X
y
60
-2
55-
50
45
44
40
0
35-
30
1
25
2
20
20
15
3
10
5
LO
4
3-2
T
-1
0
5-
4-
-3-
2-
A system of inequalities is shown.
y
5
3
2
1
X
-5
-4
-3
-2
-1
0
1
2
3
4
5
-1-
Which system is represented in the graph?
Oy>-x²-x+1
y 2x²+3
-2
-3
т
Which set of systems of equations represents the solution to the graph?
-5
-4
-3
-2
Of(x) = x² + 2x + 1
g(x) = x²+1
f(x) = x²+2x+1
g(x) = x²-1
f(x) = −x² + 2x + 1
g(x) = x²+1
f(x) = x² + 2x + 1
g(x) = x²-1
-1
5 y
4
3
2
1
0
-1-
-2
-3-
-4.
-5
1
2
3
4
5
Chapter J Solutions
Pearson eText Algebra and Trigonometry: Graphs and Models -- Instant Access (Pearson+)
Ch. J.1 - In Exercises 1-6, consider the numbers
6, −2.45,...Ch. J.1 - In Exercises 1–6, consider the numbers
6, −2.45,...Ch. J.1 - In Exercises 1–6, consider the numbers
6, −2.45,...Ch. J.1 - In exercises 1–6, consider the numbers
6, −2.45,...Ch. J.1 - Prob. 5ECh. J.1 - In Exercises 1–6, consider the numbers
6, −2.45,...Ch. J.2 - Name the property illustrated by the sentence.
1....Ch. J.2 - Prob. 2ECh. J.2 - Prob. 3ECh. J.2 - Prob. 4E
Ch. J.2 - Prob. 5ECh. J.2 - Prob. 6ECh. J.2 - Prob. 7ECh. J.2 - Prob. 8ECh. J.2 - Prob. 9ECh. J.2 - Prob. 10ECh. J.3 - Classify the inequality as true or false.
1. 9 <...Ch. J.3 - Prob. 2ECh. J.3 - Prob. 3ECh. J.3 - Prob. 4ECh. J.3 - Prob. 5ECh. J.3 - Prob. 6ECh. J.4 - Simplify.
1. |−98|
Ch. J.4 - Prob. 2ECh. J.4 - Prob. 3ECh. J.4 - Prob. 4ECh. J.4 - Prob. 5ECh. J.4 - Prob. 6ECh. J.4 - Prob. 7ECh. J.4 - Prob. 8ECh. J.5 - Compute and simplify.
1. 8 − (−11)
Ch. J.5 - Prob. 2ECh. J.5 - Prob. 3ECh. J.5 - Prob. 4ECh. J.5 - Prob. 5ECh. J.5 - Prob. 6ECh. J.5 - Prob. 7ECh. J.5 - Prob. 8ECh. J.5 - Prob. 9ECh. J.5 - Prob. 10ECh. J.5 - Prob. 11ECh. J.5 - Prob. 12ECh. J.5 - Prob. 13ECh. J.5 - Prob. 14ECh. J.5 - Prob. 15ECh. J.6 - Write interval notation.
1. {x| −5 ≤ x ≤ 5}
Ch. J.6 - Prob. 2ECh. J.6 - Prob. 3ECh. J.6 - Prob. 4ECh. J.6 - Prob. 5ECh. J.6 - Prob. 6ECh. J.6 - Prob. 7ECh. J.6 - Prob. 8ECh. J.6 - Prob. 9ECh. J.6 - Prob. 10ECh. J.7 - Prob. 1ECh. J.7 - Prob. 2ECh. J.7 - Prob. 3ECh. J.7 - Prob. 4ECh. J.7 - Prob. 5ECh. J.7 - Prob. 6ECh. J.7 - Prob. 7ECh. J.7 - Prob. 8ECh. J.7 - Prob. 9ECh. J.7 - Prob. 10ECh. J.8 - Prob. 1ECh. J.8 - Prob. 2ECh. J.8 - Prob. 3ECh. J.8 - Prob. 4ECh. J.8 - Prob. 5ECh. J.8 - Prob. 6ECh. J.8 - Prob. 7ECh. J.8 - Prob. 8ECh. J.9 - Calculate.
1. 3 + 18 ÷ 6 − 3
Ch. J.9 - Calculate.
2. 5 ∙ 3 + 8 ∙ 32 + 4(6 − 2)
Ch. J.9 - Calculate.
3. 5(3 – 8 ∙ 32 + 4 ∙ 6 − 2)
Ch. J.9 - Calculate.
4. 16 ÷ 4 ∙ 4 ÷ 2 ∙ 256
Ch. J.9 - Calculate.
5. 26 ∙2−3 ÷ 210 ÷ 2−8
Ch. J.9 - Prob. 6ECh. J.9 - Prob. 7ECh. J.9 - Prob. 8ECh. J.10 - Determine the degree of the polynomial.
1. 5 − x6
Ch. J.10 - Prob. 2ECh. J.10 - Prob. 3ECh. J.10 - Prob. 4ECh. J.10 - Prob. 5ECh. J.10 - Prob. 6ECh. J.10 - Prob. 7ECh. J.10 - Prob. 8ECh. J.11 - Prob. 1ECh. J.11 - Prob. 2ECh. J.11 - Prob. 3ECh. J.11 - Prob. 4ECh. J.11 - Prob. 5ECh. J.12 - Prob. 1ECh. J.12 - Prob. 2ECh. J.12 - Prob. 3ECh. J.12 - Prob. 4ECh. J.12 - Prob. 5ECh. J.12 - Prob. 6ECh. J.13 - Prob. 1ECh. J.13 - Prob. 2ECh. J.13 - Prob. 3ECh. J.13 - Prob. 4ECh. J.13 - Prob. 5ECh. J.13 - Prob. 6ECh. J.14 - Prob. 1ECh. J.14 - Prob. 2ECh. J.14 - Prob. 3ECh. J.14 - Prob. 4ECh. J.14 - Prob. 5ECh. J.14 - Prob. 6ECh. J.14 - Factor the trinomial.
7. 2n2 − 20n − 48
Ch. J.14 - Prob. 8ECh. J.14 - Prob. 9ECh. J.14 - Prob. 10ECh. J.14 - Prob. 11ECh. J.14 - Prob. 12ECh. J.15 - Prob. 1ECh. J.15 - Prob. 2ECh. J.15 - Prob. 3ECh. J.16 - Factor the difference of squares.
1. z2 − 81
Ch. J.16 - Prob. 2ECh. J.16 - Prob. 3ECh. J.16 - Prob. 4ECh. J.16 - Prob. 5ECh. J.16 - Prob. 6ECh. J.16 - Prob. 7ECh. J.16 - Factor the sum or the difference of cubes.
8. m3 −...Ch. J.16 - Factor the sum or the difference of cubes.
9. 3a5...Ch. J.16 - Factor the sum or the difference of cubes.
10. t6...Ch. J.17 - Prob. 1ECh. J.17 - Prob. 2ECh. J.17 - Prob. 3ECh. J.17 - Prob. 4ECh. J.17 - Prob. 5ECh. J.17 - Prob. 6ECh. J.17 - Prob. 7ECh. J.17 - Prob. 8ECh. J.18 - Prob. 1ECh. J.18 - Prob. 2ECh. J.18 - Prob. 3ECh. J.18 - Prob. 4ECh. J.18 - Prob. 5ECh. J.18 - Prob. 6ECh. J.19 - Prob. 1ECh. J.19 - Prob. 2ECh. J.19 - Prob. 3ECh. J.19 - Prob. 4ECh. J.19 - Prob. 5ECh. J.19 - Prob. 6ECh. J.19 - Prob. 7ECh. J.19 - Prob. 8ECh. J.20 - Prob. 1ECh. J.20 - Prob. 2ECh. J.20 - Prob. 3ECh. J.20 - Prob. 4ECh. J.20 - Prob. 5ECh. J.20 - Prob. 6ECh. J.21 - Find the domain of the rational expression.
1.
Ch. J.21 - Prob. 2ECh. J.21 - Prob. 3ECh. J.21 - Prob. 4ECh. J.21 - Simplify.
5.
Ch. J.21 - Simplify.
6.
Ch. J.22 - Multiply or divide and, if possible, simplify.
1....Ch. J.22 - Prob. 2ECh. J.22 - Prob. 3ECh. J.22 - Prob. 4ECh. J.22 - Multiply or divide and, if possible, simplify.
5....Ch. J.22 - Multiply or divide and, if possible, simplify.
6....Ch. J.23 - Add or subtract and, if possible, simplify.
1.
Ch. J.23 - Prob. 2ECh. J.23 - Prob. 3ECh. J.23 - Prob. 4ECh. J.23 - Add or subtract and, if possible, simplify.
5.
Ch. J.23 - Add or subtract and, if possible, simplify.
6.
Ch. J.24 - Simplify.
1.
Ch. J.24 - Prob. 2ECh. J.24 - Simplify.
3.
Ch. J.24 - Prob. 4ECh. J.24 - Simplify.
5.
Note: b − a = −1(a − b)
Ch. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Prob. 2ECh. J.25 - Prob. 3ECh. J.25 - Prob. 4ECh. J.25 - Prob. 5ECh. J.25 - Prob. 6ECh. J.25 - Prob. 7ECh. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Prob. 10ECh. J.25 - Prob. 11ECh. J.25 - Prob. 12ECh. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Prob. 14ECh. J.25 - Prob. 15ECh. J.25 - Prob. 16ECh. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Simplify. Assume that no radicands were formed by...Ch. J.25 - Prob. 19ECh. J.25 - Prob. 20ECh. J.26 - Rationalize the denominator.
1.
Ch. J.26 - Rationalize the denominator.
2.
Ch. J.26 - Prob. 3ECh. J.26 - Rationalize the denominator.
4.
Ch. J.26 - Prob. 5ECh. J.26 - Prob. 6ECh. J.26 - Prob. 7ECh. J.26 - Rationalize the denominator.
8.
Ch. J.27 - Convert to radical notation and, if possible,...Ch. J.27 - Prob. 2ECh. J.27 - Convert to radical notation and, if possible,...Ch. J.27 - Prob. 4ECh. J.27 - Convert to radical notation and, if possible,...Ch. J.27 - Prob. 6ECh. J.27 - Prob. 7ECh. J.27 - Prob. 8ECh. J.27 - Prob. 9ECh. J.27 - Prob. 10ECh. J.27 - Simplify and then, if appropriate, write radical...Ch. J.28 - Prob. 1ECh. J.28 - Prob. 2ECh. J.28 - Prob. 3ECh. J.28 - Prob. 4ECh. J.28 - Prob. 5E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Which of the graphs below correctly solves for x in the equation -x² - 3x-1=-x-4? о 10 8 (0,2) -10 -8 -6 -2 2 4 6 8 10 (-4,-2) -2 + (0,2) (4,6) -10-8-6-4-2 -2 2 4 6 8 10 (-3, -1) -2 2 (1-5) -6 -8 -10 10 -10-8-6-4-2 2 6 8 10 (2,0)arrow_forward1) Express these large and small numbers from the Read and Study section in scientific notation: (a) 239,000 miles (b) 3,800,000,000,000 sheets of paper (c) 0.0000000000000000000000167 grams 2) Find all values for the variable x that make these equations true. (a) 5x = 1 (b) 3x = 1/1 9 (c) 4* = 11/ 4 (e) 4* = 64 (g) 10x = 1,000,000 (d) 3x=-3 (f) 2x = = 8 (h) 10x = 0.001arrow_forward(b) 4) Find an equation to fit each of the following graphs: (a) 20 20 18 16 14 12 10 8 6 4 2 24 22 20 18 16 14 12 10 8 16 A 2 -3 -2 -1-0 2 3 4. -1 0 1 2 3. -2 -2arrow_forward
- 3) Which of the following are equivalent to 3? (There may be more than one that is equivalent!) -1 (a) (9)¯¹ 3. (b) (-3)-1 (c) (-3) -1 (d) -(¯3) (e) 11 3-1 (f) 3-4arrow_forwardY- ___b=_____ (X- )arrow_forwardFind the Laplace Transform of the function to express it in frequency domain form.arrow_forward
- Please draw a graph that represents the system of equations f(x) = x2 + 2x + 2 and g(x) = –x2 + 2x + 4?arrow_forwardGiven the following system of equations and its graph below, what can be determined about the slopes and y-intercepts of the system of equations? 7 y 6 5 4 3 2 -6-5-4-3-2-1 1+ -2 1 2 3 4 5 6 x + 2y = 8 2x + 4y = 12 The slopes are different, and the y-intercepts are different. The slopes are different, and the y-intercepts are the same. The slopes are the same, and the y-intercepts are different. O The slopes are the same, and the y-intercepts are the same.arrow_forwardChoose the function to match the graph. -2- 0 -7 -8 -9 --10- |--11- -12- f(x) = log x + 5 f(x) = log x - 5 f(x) = log (x+5) f(x) = log (x-5) 9 10 11 12 13 14arrow_forward
- Which of the following represents the graph of f(x)=3x-2? 7 6 5 4 ++ + + -7-6-5-4-3-2-1 1 2 3 4 5 6 7 -2 3 -5 6 -7 96 7 5 4 O++ -7-6-5-4-3-2-1 -2 -3 -4 -5 -7 765 432 -7-6-5-4-3-2-1 -2 ++ -3 -4 -5 -6 2 3 4 5 6 7 7 6 2 345 67 -7-6-5-4-3-2-1 2 3 4 5 67 4 -5arrow_forward13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of the following sets and the cardinal number of each set. a) W° and n(W) b) (VUW) and n((V U W)') c) VUWUX and n(V U W UX) d) vnWnX and n(V WnX)arrow_forward9) Use the Venn Diagram given below to determine the number elements in each of the following sets. a) n(A). b) n(A° UBC). U B oh a k gy ท W z r e t ་ Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License