Single Variable Calculus: Concepts and Contexts, Enhanced Edition
Single Variable Calculus: Concepts and Contexts, Enhanced Edition
4th Edition
ISBN: 9781337687805
Author: James Stewart
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter G, Problem 33E
To determine

To calculate:

The integral value of the following:

  x3(x2+2x+4)2dx

Expert Solution & Answer
Check Mark

Answer to Problem 33E

The integral value of x3(x2+2x+4)2dx is 2arctan(x+13)3324x+76(x2+2x+4)+C .

Explanation of Solution

Given information:

The integral function:

  x3(x2+2x+4)2dx

Calculation:

The integral function is given that:

  x3(x2+2x+4)2dx

Now,

  x3(x2+2x+4)2dx=(2x+22(x2+2x+4)24(x2+2x+4)2)dx

  x3(x2+2x+4)2dx=x+1(x2+2x+4)2dx1(x2+2x+4)2dx   ...(1)

Simplify the first term of above right hand side of equation (1)

  x+1(x2+2x+4)2dx

Now, substitute the value:

  u=x2+2x+4ddx(u)=ddx(x2+2x+4)dudx=2x+2dx=12x+2du=12u2du

Simplify the equation:

  x+1(x2+2x+4)2dx=121u2du

Know that:

  1u2du=1u[undu=un+1n+1,n=2]

Put in solved integral:

  121u2du=12u

Substitute the value u=x2+2x+4 :

  121u2du=12(x2+2x+4)dx   ...(2)

Simplify the second term of above right hand side of equation (1)

  1(x2+2x+4)2dx=1(x2+2x+1+3)2dx

  1(x2+2x+4)2dx=1((x+1)2+3)2dx[a2+2ab+b2=(a+b)2]   ...(3)

Substitute:

  u=x+1ddx(u)=d(x+1)dudx=1du=dx

The equation 3 rewritten as

  1(x2+2x+4)2dx=1(u2+3)2du

  1(x2+2x+4)2dx=u6(u2+3)du+161u2+3du   ...(4)

By using this formula:

  1(au2+b)ndu=2n32b(n1)1(au2+b)n1du+u2b(n1)(au+b)n1,a=1,b=3,n=2 Simplify the first term of above right hand side of equation (4)

  u(u2+3)du

Substitute

  v=u3ddu(v)=ddu(u3)du=3dv

  u(u2+3)du=33v2+3dv

Simplify the equation:

  u(u2+3)du=131v2+1dv  ...(5)

Know that, this is the standard integral.

  1v2+1dv=arctan(v)

Put in solved integral:

  131v2+1dv=arctan(v)3

Substitute the value v=u3

  131v2+1dv=arctan(u3)3

Put the value in equation (4)

  1(x2+2x+4)2dx=u6(u2+3)du+161u2+3du

  1(x2+2x+4)2dx=arctan(u3)2.332du+u6(u2+3)

Substitute u=x+1

  1(x2+2x+4)2dx=arctan(x+13)2.332du+x+16((x+1)2+3)

Put the solved integral in equation (1)

  x3(x2+2x+4)2dx=x+1(x2+2x+4)2dx41(x2+2x+4)2dx

  x3(x2+2x+4)2dx=2arctan(x+13)3322(x+1)3((x+1)2+3)12(x2+2x+4)

This problem is solved:

  x3(x2+2x+4)2dx=2arctan(x+13)3322(x+1)3((x+1)2+3)12(x2+2x+4)+C

Simplify the equation:

  x3(x2+2x+4)2dx=2arctan(x+13)3324x+76(x2+2x+4)+C

Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY