Structural Analysis, Si Edition (mindtap Course List)
Structural Analysis, Si Edition (mindtap Course List)
6th Edition
ISBN: 9781337630948
Author: KASSIMALI, Aslam
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter D, Problem 1P
To determine

Calculate the reactions for the given beam.

Sketch the shear and bending moment diagrams for the given beam.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The horizontal reaction at A is Ax=0_.

The vertical reaction at A is Ay=15.63k_.

The vertical reaction at C is Cy=68.75k_.

The vertical reaction at E is Ey=15.63k_.

Explanation of Solution

Given information:

The structure is given in the Figure.

Apply the sign conventions for calculating reactions using the three equations of equilibrium as shown below.

  • For summation of forces along x-direction is equal to zero (Fx=0), consider the forces acting towards right side as positive (+) and the forces acting towards left side as negative ().
  • For summation of forces along y-direction is equal to zero (Fy=0), consider the upward force as positive (+) and the downward force as negative ().
  • For summation of moment about a point is equal to zero (Matapoint=0), consider the clockwise moment as negative and the counter clockwise moment as positive.

Calculation:

Find the degree of indeterminacy of the structure:

Degree of determinacy of the beam is equal to the number of unknown reactions minus the number of equilibrium equations.

The beam is supported by 4 support reactions and the number of equilibrium equations is 3.

Therefore, the degree of indeterminacy of the beam is i=1.

Select the bending moment MB at the interior support B as redundant.

Consider the supports A, C, and E as l, c, and r respectively.

Express the general three-moment equation as shown below:

MlLlIl+2Mc(LlIl+LrIr)+MrLrIr=[PlLl2klIl(1kl2)PrLr2krIr(1kr2)wlLl34IlwrLr34Ir6E(ΔlΔcLl+ΔrΔcLr)]        (1)

Here, Mc is the bending moment at support c, Ml,Mr are the bending moments at the adjacent supports to the left and to the right of c, E is the modulus of elasticity, Ll,Lr are the lengths of the spans to the left and to the right of c, Il,Ir are the moments of inertia of the spans to the left and to the right of c, Pl,Pr are the concentrated loads acting on the left and the right spans, kl or kr is the ratio of distance of Pl or Pr from the left or right support to the span length, wl,wr are the uniformly distributed loads to the left and right spans, Δc is the settlement of support c, Δl,Δr is the settlement of adjacent supports to the left and to the right of c,

Refer the given Figure.

The moment at A and E is MA=ME=0.

Apply three-moment equation at joint C,

Substitute 16 ft for Ll, 16 ft for Lr 2I for Il, I for Ir, 50 k for Pl, 50 k for Pr, 0.5 for kl, 0.5 for kr, 0 for wl, 0 for wr, and 0 for Δc,Δl,Δr in Equation (1).

2MC(162I+16I)=50(16)2(0.5)2I(10.52)50(16)2(0.5)I(10.52)48MCI=2,400I4,800I48MC=7,200MC=150k-ft

Sketch the span end moments and shears for span ABC and CDE as shown in Figure 1.

Structural Analysis, Si Edition (mindtap Course List), Chapter D, Problem 1P , additional homework tip  1

Use equilibrium equations:

For span ABC,

Summation of moments of all forces about A is equal to 0.

MA=0Cy(16)15050(8)=0Cy=34.375k

Summation of forces along y-direction is equal to 0.

+Fy=0Ay50+Cy=0Ay50+34.375=0Ay=15.625k

Ay15.63k

For span CDE,

Summation of moments of all forces about C is equal to 0.

MC=0Ey(16)+15050(8)=0Ey=15.625kEy15.63k

Summation of forces along y-direction is equal to 0.

+Fy=0Cy50+Ey=0Cy50+15.625=0Cy=34.375k

Find the total reaction at C.

Cy=34.375k+34.375k=68.75k

Sketch the reactions for the given beam as shown in Figure 2.

Structural Analysis, Si Edition (mindtap Course List), Chapter D, Problem 1P , additional homework tip  2

Find the shear force (S) for the given beam:

At point A,

SA,R=15.625k

At point B,

SB,L=15.625kSB,R=15.62550=34.375k

At point C,

SC,L=15.62550=34.375kSC,R=15.62550+68.75=34.375k

At point D,

SD,L=15.62550+68.75=34.375kSD,R=15.62550+68.7550=15.625k

At point E,

SE,L=15.62550+68.7550=15.625k

Sketch the shear diagram for the given beam as shown in Figure 3.

Structural Analysis, Si Edition (mindtap Course List), Chapter D, Problem 1P , additional homework tip  3

Find the bending moment (M) for the given beam:

At point A,

MA=0

At point B,

MB=15.625(8)=125k-ft

At point C,

MC=15.625(16)50(8)=150k-ft

At point D,

MD=15.625(24)50(16)+68.75(8)=125k-ft

At point E,

ME=0

Sketch the bending moment diagram for the given beam as shown in Figure 4.

Structural Analysis, Si Edition (mindtap Course List), Chapter D, Problem 1P , additional homework tip  4

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ASSIGNMENT. 1. The following figure is a billboard sketch, design the members. Hint, the billboard is usually designed against wind loads and its own self weight. For the dimensions, you can visit existing billboards to see usual dimensions. 3D View
In order to solve the frame given below with the Force Method, remove restraints from joints A and G and draw only the bending moment diagrams Mo, M₁, M2 and M3 for this case. (25 Pts.) Note: Only bending moment diagrams that are used for the solution are required. There is no need to do any further calculations. 4 kN B I E D 2 kN/m H 3 m 3 m 4 m + 2 m 4m
please show complete solution with formula
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,