
Machine Tool Practices
11th Edition
ISBN: 9780134985848
Author: Richard R. Kibbe; Roland O. Meyer; Jon Stenerson; Kelly Curran
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter C.7, Problem 8ST
To determine
A gage block that are necessary to assemble a stack equal to 3.0213.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Using the three moment theorem, how was A2 determined?
Draw the kinematic diagram of the following mechanism
##### For the attached electropneumatic circuit, design where and how a counter should be attached so that a part is counted for each cycle
Chapter C Solutions
Machine Tool Practices
Ch. C.1 - Prob. 1STCh. C.1 - Prob. 2STCh. C.1 - Prob. 3STCh. C.1 - Prob. 4STCh. C.1 - Prob. 5STCh. C.1 - Prob. 6STCh. C.1 - Prob. 7STCh. C.1 - Prob. 8STCh. C.1 - Prob. 9STCh. C.1 - Prob. 10ST
Ch. C.2 - Prob. 1STCh. C.2 - Prob. 2STCh. C.2 - Prob. 3STCh. C.2 - Prob. 4STCh. C.2 - Prob. 5STCh. C.2 - Prob. 6STCh. C.2 - Prob. 7STCh. C.2 - Prob. 8STCh. C.2 - Prob. 9STCh. C.2 - Can an inch machine tool be converted to work in...Ch. C.3 - Prob. 1.1STCh. C.3 - Prob. 1.2STCh. C.3 - Prob. 1.3STCh. C.4 - Prob. 1.1STCh. C.4 - Prob. 1.2STCh. C.4 - Prob. 1.3STCh. C.5 - Prob. 1STCh. C.5 - Prob. 2STCh. C.5 - Prob. 3STCh. C.5 - Prob. 4STCh. C.5 - Prob. 5STCh. C.5 - Prob. 6STCh. C.5 - Prob. 7STCh. C.5 - Prob. 8STCh. C.5 - Prob. 9STCh. C.5 - Prob. 10STCh. C.5 - Prob. 11STCh. C.5 - Prob. 1.1STCh. C.5 - Prob. 1.2STCh. C.5 - Prob. 2.1STCh. C.5 - Prob. 3.1STCh. C.5 - Prob. 4.1STCh. C.6 - What is comparison measurement?Ch. C.6 - Define cosine error.Ch. C.6 - Prob. 3STCh. C.6 - Prob. 4STCh. C.6 - Prob. 5STCh. C.6 - Prob. 6STCh. C.6 - Prob. 7STCh. C.6 - Prob. 8STCh. C.7 - What is a wringing interval?Ch. C.7 - Why are wear blocks frequently used in combination...Ch. C.7 - As related to gage block use, what is meant by the...Ch. C.7 - Prob. 4STCh. C.7 - What is a conditioning stone and how is it used?Ch. C.7 - Prob. 6STCh. C.7 - Prob. 7STCh. C.7 - Prob. 8STCh. C.7 - Prob. 9STCh. C.7 - Prob. 10STCh. C.8 - Name two angular measuring instruments with one...Ch. C.8 - What is the discrimination of the universal bevel...Ch. C.8 - Describe the use of the sine bar.Ch. C.8 - Prob. 4STCh. C.8 - Calculate the required sine bar elevation for an...Ch. C.8 - A 10-inch sine bar is elevated 2.750 inch....Ch. C.8 - How do 10-inch and 5-inch sine bars affect the...Ch. C.8 - What gage block stack would establish an angle of...Ch. C.8 - What gage block stack would establish an angle of...Ch. C.8 - A 10-inch bar is elevated 2.5 inch. What angle is...Ch. C.9 - Prob. 1STCh. C.9 - Prob. 2STCh. C.9 - Prob. 3STCh. C.9 - Prob. 4STCh. C.9 - Prob. 5STCh. C.9 - Prob. 6STCh. C.9 - Prob. 7STCh. C.9 - Prob. 8STCh. C.9 - Prob. 9STCh. C.9 - Prob. 10STCh. C.9 - Prob. 11STCh. C.9 - Prob. 12STCh. C.9 - Prob. 13STCh. C.9 - Prob. 14STCh. C.9 - Prob. 15STCh. C.9 - Prob. 16STCh. C.9 - Prob. 17STCh. C.9 - Prob. 18STCh. C.9 - Prob. 19STCh. C.9 - Prob. 20STCh. C.9 - Prob. 21STCh. C.9 - Prob. 22STCh. C.9 - Prob. 23STCh. C.9 - Prob. 24STCh. C.9 - Prob. 25STCh. C.9 - Prob. 26STCh. C.9 - Prob. 27STCh. C.9 - Prob. 28STCh. C.9 - Prob. 29STCh. C.9 - Prob. 30STCh. C.9 - Prob. 31STCh. C.9 - Prob. 32STCh. C.9 - Prob. 33STCh. C.9 - Prob. 34STCh. C.10 - Prob. 1STCh. C.10 - Prob. 2STCh. C.10 - Prob. 3STCh. C.10 - Prob. 4STCh. C.10 - Prob. 5STCh. C.10 - Prob. 6STCh. C.10 - Prob. 7STCh. C.10 - Prob. 8STCh. C.10 - Prob. 9ST
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- If you have a spring mass damper system, given by m*x_double_dot + c*x_dot + kx = 0 where m, c, k (all positive scalars) are the mass, damper coefficient, and spring coefficient, respectively. x ∈ R represents the displacement of the mass. Let us then discuss the stability of the system by using Lyapunov stability theorem. Consider the system energy as a candidate Lyapunov function shown in the image. Discuss the positive definiteness of V (x, x_dot). Derive the Lyapunov rate of this system (i.e., V_dot ), and discuss the stability property of thesystem based on the information we gain from ̇V_dot .arrow_forwardIn class, two approaches—Theorems 1 and 2 below—are discussed to prove asymptotic stability of asystem when ̇V = 0. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 1. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 2.arrow_forwardHomework#5arrow_forwardIf you have a spring mass damper system, given by m*x_double_dot + c*x_dot + kx = 0 where m, c, k (all positive scalars) are the mass, damper coefficient, and spring coefficient, respectively. x ∈ R represents the displacement of the mass. Using linear stability analysis, show that the system is asymptotically stable. Hint: stability of a linear system z_dot = Az is characterized by the eigenvalues of A.arrow_forwardWhat would the electropneumatic diagram of a circuit with the sequence a+b+c+(a-b-c-) look like?arrow_forward### What would the electropneumatic diagram of a circuit with the sequence a+b+c+(a-b-c-) look like, with a counter, in the fluidsim?arrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m CCalculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) a) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. b) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardA differential element on the bracket is subjected to plane strain that has the following components:, Ɛx = 300 × 10-6, Ɛy = 150 × 10-6, Ɛxy = -750 x 10-6. Use the strain-transformation equations and determine the normal strain Ɛx in the X/ direction on an element oriented at an angle of 0 = 40°. Note, a positive angle, 0, is counter clockwise. x Enter your answer in micro strain to a precision of two decimal places. eg. if your answer is 300.15X106, please enter 300.15.arrow_forwardIf the 50 mm diameter shaft is made from brittle material having an ultimate strength of σult=595 MPa for both tension and compression, determine the factor of safety of the shaft against rupture. The applied force, F, is 140 kN. The applied torque T, is 5.0 kN⚫m. Enter your answer to a precision of two decimal places. T Farrow_forwardЗіс 1 mH 10 Ω m 16 cos 2.5 × 104 A Lic 592 10 Ω 1 μFarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning