Structural Analysis, Si Edition
Structural Analysis, Si Edition
5th Edition
ISBN: 9781285051505
Author: Aslam Kassimali
Publisher: Cengage Learning
Question
Book Icon
Chapter B, Problem 10P
To determine

Find the inverse of the matrix using the Gauss Jordan method.

Expert Solution & Answer
Check Mark

Answer to Problem 10P

The inverse of the matrix is A1=[0.48180.05450.28180.34550.05450.16360.34550.03640.28180.34550.11820.14550.34550.03640.14550.4364]_.

Explanation of Solution

Given information:

A=[4203234004213015]

Calculation:

Write the given matrix in augmented matrix form:

A=AI=[4203234004213015|1000010000100001]

Divide the first row by 4.

A=[112034234004213015|14000010000100001]

In the second row, subtract the first row multiplied with 2 from second row.

A=[112034234004213015|14000010000100001]R2R22R1=[11203422×132×12402×(34)04213015|1400002×(14)10000100001]=[1120340243204213015|140001210000100001]

In the fourth row, subtract the first row multiplied with ­3 from fourth row.

A=[1120340243204213015|140001210000100001]R4R4(3)R1=[1120340243204213(3×1)0(3×12)15(3×(34))|140001210000100(3×(14))001]=[1120340243204210321114|1400012100001034001]

Divide the second row by 2.

A=[1120340123404210321114|14000141200001034001]

In the first row, subtract the second row multiplied with 12 from first row.

A=[1120340123404210321114|14000141200001034001]R1R1(12R2)=[112(12×1)0(12×(2))34(12×34)0123404210321114|14(12×(14))0(12×(12))00141200001034001]=[101980123404210321114|381400141200001034001]

In the third row, subtract the second row multiplied with ­4 from third row.

A=[101980123404210321114|381400141200001034001]R3R3(4)R2=[101980123404(4)×12(4)×(2)1(4)×(34)0321114|3814001412000(4)×(38)0(4)×(14)1034001]=[101980123400620321114|381400141200121034001]

In the fourth row, subtract the second row multiplied with 32 from the fourth row.

A=[101980123400620321114|381400141200121034001]R4R4(32)R2=[10198012340062032(32)×11(32)×(2)114(32)×(34)|381400141200121034(32)×(14)0(32)×(12)01]=[10198012340062002138|3814001412001210983401]

Divide the third row by –6.

A=[101980123400113002138|3814001412001613160983401]

In the first row, subtract the third row from the first row.

A=[101980123400113002138|3814001412001613160983401]R1R1R3=[101198(13)0123400113002138|38(16)14(13)0(16)01412001613160983401]=[10019240123400113002138|5241121601412001613160983401]

In the second row, subtract the third row multiplied with ­2 from the second row.

A=[10019240123400113002138|5241121601412001613160983401]R2R2(2R3)=[1001924012(2×1)34(2×(13))00113002138|52411216014(2×(16))12(2×(12))0(2×(16))01613160983401]=[100192401011200113002138|524112160112161301613160983401]

In the fourth row, subtract the third row multiplied with ­1 from the fourth row.

A=[100192401011200113002138|524112160112161301613160983401]R4R4(1R3)=[100192401011200113002(1×1)138(1×(13))|52411216011216130161316098(1×(16))34(1×(13))0(1×(16))1]=[1001924010112001130005524|5241121601121613016131601924112131]

Divide the fourth row by 5524.

A=[1001924010112001130001|52411216011216130161316019552558552455]

In the first row, subtract the fourth row multiplied with 1924 from the first row.

A=[1001924010112001130001|52411216011216130161316019552558552455]R1R1(1924R4)=[1001924(1924×1)010112001130001|524(1924×1955)112(1924×(255))16(1924×855)0(1924×2455)11216130161316019552558552455]=[1000010112001130001|5311035531110195511216130161316019552558552455]

In the second row, subtract the fourth row multiplied with 112 from the second row.

A=[1000010112001130001|5311035531110195511216130161316019552558552455]R2R2(112R4)=[1000010112(112×1)001130001|53110355311101955112(112×1955)16(112×(255))13(112×855)0(112×2455)161316019552558552455]=[10000100001130001|531103553111019553559551955255161316019552558552455]

In the third row, subtract the fourth row multiplied with 13 from the third row.

A=[10000100001130001|531103553111019553559551955255161316019552558552455]R3R2(13R4)=[1000010000113(13×1)0001|5311053110311101955355955195525516(13×1971)13(13×(271))16(13×871)0(13×2471)19552558552455]=[1000010000100001|5311035531110195535595519552553111019551311085519552558552455]=[1000010000100001|0.48180.05450.28180.34550.05450.16360.34550.03640.28180.34550.11820.14550.34550.03640.14550.4364]=[I|A1]

Thus, the inverse of the matrix is A1=[0.48180.05450.28180.34550.05450.16360.34550.03640.28180.34550.11820.14550.34550.03640.14550.4364]_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.
4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)
Why is Historical Data important compared to other sourses of information when estimating construction projects?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning