Calculus: An Applied Approach (MindTap Course List)
10th Edition
ISBN: 9781305860919
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter A4, Problem 71E
To determine
To calculate: The zeros of the polynomial
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe how to use Descartes’s Rule of Signs to determine the possible number of positive real zeros of a polynomial function.
"Use the Rational Zeros Theorem to find all the real zeros of each polynomial function. Use the zeros to factor f overthe real numbers.;f(x) =2x3 - 4x2 - 10x + 20
MAT109
Test 2
Given (-3 + i) is a root of the polynomial f(x) = 4x3 + 23x² + 34x – 10, find all roots
and write the function in factored form with linear terms of the form (ax - b).
a) Irrational roots:
b) Rational roots:
c) Factored form:
Chapter A4 Solutions
Calculus: An Applied Approach (MindTap Course List)
Ch. A4 - Prob. 1CPCh. A4 - Prob. 2CPCh. A4 - Prob. 3CPCh. A4 - Prob. 4CPCh. A4 - Prob. 1ECh. A4 - Prob. 2ECh. A4 - Prob. 3ECh. A4 - Prob. 4ECh. A4 - Prob. 5ECh. A4 - Prob. 6E
Ch. A4 - Prob. 7ECh. A4 - Prob. 8ECh. A4 - Prob. 9ECh. A4 - Prob. 10ECh. A4 - Prob. 11ECh. A4 - Prob. 12ECh. A4 - Prob. 13ECh. A4 - Prob. 14ECh. A4 - Prob. 15ECh. A4 - Prob. 16ECh. A4 - Factoring Polynomials In Exercises 9-18, write the...Ch. A4 - Prob. 18ECh. A4 - Prob. 19ECh. A4 - Prob. 20ECh. A4 - Prob. 21ECh. A4 - Prob. 22ECh. A4 - Prob. 23ECh. A4 - Prob. 24ECh. A4 - Prob. 25ECh. A4 - Prob. 26ECh. A4 - Prob. 27ECh. A4 - Prob. 28ECh. A4 - Prob. 29ECh. A4 - Prob. 30ECh. A4 - Prob. 31ECh. A4 - Prob. 32ECh. A4 - Prob. 33ECh. A4 - Prob. 34ECh. A4 - Prob. 35ECh. A4 - Prob. 36ECh. A4 - Prob. 37ECh. A4 - Prob. 38ECh. A4 - Prob. 39ECh. A4 - Prob. 40ECh. A4 - Prob. 41ECh. A4 - Prob. 42ECh. A4 - Prob. 43ECh. A4 - Prob. 44ECh. A4 - Prob. 45ECh. A4 - Prob. 46ECh. A4 - Prob. 47ECh. A4 - Prob. 48ECh. A4 - Prob. 49ECh. A4 - Prob. 50ECh. A4 - Prob. 51ECh. A4 - Prob. 52ECh. A4 - Prob. 53ECh. A4 - Prob. 54ECh. A4 - Prob. 55ECh. A4 - Prob. 56ECh. A4 - Prob. 57ECh. A4 - Prob. 58ECh. A4 - Prob. 59ECh. A4 - Prob. 60ECh. A4 - Prob. 61ECh. A4 - Prob. 62ECh. A4 - Prob. 63ECh. A4 - Prob. 64ECh. A4 - Prob. 65ECh. A4 - Prob. 66ECh. A4 - Prob. 67ECh. A4 - Prob. 68ECh. A4 - Prob. 69ECh. A4 - Prob. 70ECh. A4 - Prob. 71ECh. A4 - Prob. 72ECh. A4 - Prob. 73ECh. A4 - Prob. 74ECh. A4 - Prob. 75ECh. A4 - Prob. 76E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- In Exercises 2-6, fill in the blanks. The Theorem states that if a polynomial f(x)is divided by xk,then the remainder is r=f(k).arrow_forwardIn Exercises 33-48, (a) find all real zeros of the polynomial function, (b) determine whether the multiplicity of each zero is even or odd, (c) determine the maximum possible number of turning points of the graph of the function, and (d) use a graphing utility to graph the function and verify your answers. f(x)=x4x330x2arrow_forwardUse synthetic division to show that x=3 is a zero of the function f(x)=2x35x26x+15. Use the result to factor the polynomial function completely and list all the zeros of the function.arrow_forward
- Approximating Zeros In Exercises 71-76, (a) use the zero or root feature of a graphing utility to approximate the zeros of the function accurate to three decimal places, (b) determine the exact value of one of the zeros, and (c) use synthetic division to verify your result from part (b), and then factor the polynomial completely. h(t)=t32t27t+2arrow_forwardUse the Rational Zero Theorem to help you find the zeros of the polynomial functions. f(x)=2x3+5x26x9arrow_forwardUse the Rational Zero Theorem to list all possible rational zeros of the polynomial function. P(x)=3x4x3+7x25x8arrow_forward
- In Exercises 2-6, fill in the blanks. The Theorem states that a polynomial f(x)has a factor (xk)if and only if f(k)=0.arrow_forwardFinding Real Zeros of a Polynomial Function In Exercises 33-48, (a) find all real zeros of the polynomial function, (b) determine whether the multiplicity of each zero is even or odd, (c) determine the maximum possible number of turning points of the graph of the function, and (d) use a graphing utility to graph the function and verify your answers. f(x)=81x2arrow_forwardTrue or False? In Exercises 83-86, determine whether the statement is true or false. Justify your answer. If (7x+4)is a factor of some polynomial function f(x), then 47is a zero of f.arrow_forward
- Fill in the blanks. When a real zero xa of a polynomial functionfis of even multiplicity, the graph of fthe x-axisatx=a,and when it is of odd multiplicity, the graph of f the x-axisatx=a.arrow_forwardIn Exercises 2-6, fill in the blanks. A shortcut for long division of polynomials is ,in which the divisor must be of the form xk.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY