In Problems 7 − 26 , graph the plane curve whose parametric equations are given, and show its orientation. Find the rectangular equation of each curve. x ( t ) = t − 3 , y ( t ) = 2 t + 4 ; 0 ≤ t ≤ 2
In Problems 7 − 26 , graph the plane curve whose parametric equations are given, and show its orientation. Find the rectangular equation of each curve. x ( t ) = t − 3 , y ( t ) = 2 t + 4 ; 0 ≤ t ≤ 2
Solution Summary: The author illustrates how to draw the parametric equation by plugging some values of t in the given equation and finding few points on the curve.
In Problems
7
−
26
,
graph the plane curve whose parametric equations are given, and show its orientation. Find the rectangular equation of each curve.
T
1
7. Fill in the blanks to write the calculus problem that would result in the following integral (do
not evaluate the interval). Draw a graph representing the problem.
So
π/2
2 2πxcosx dx
Find the volume of the solid obtained when the region under the curve
on the interval
is rotated about the
axis.
38,189
5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the
solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x|
≤
and the curve y
y =
about the line
x =
=플
2
80
F3
a
FEB
9
2
7
0
MacBook Air
3
2
stv
DG
Find f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x.
h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1
-
-
-
f(x) = ☐
Chapter 9 Solutions
Pearson eText for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Fundamental Theorem of Calculus 1 | Geometric Idea + Chain Rule Example; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=hAfpl8jLFOs;License: Standard YouTube License, CC-BY