
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9.6, Problem 32P
Find the speed in rpm of gear D in each gear train.
32.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this
coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping.
°
=
A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal.
(a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom.
horizontal force
magnitude
342.
N
direction
towards the wall
✓
vertical force
1330
N
up
magnitude
direction
(b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground?
0.26
×
You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of
your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop,
ma
when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of
average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and
hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the
magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of
Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also
assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.)
(a) What force (in N) must John apply along the handles to just start the wheel over the brick?
(No Response) N
(b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick?
magnitude (No Response) KN
direction
(No Response) ° clockwise from the -x-axis
Chapter 9 Solutions
Applied Physics (11th Edition)
Ch. 9.1 - Convert 612 revolutions a. to radians. b. to...Ch. 9.1 - Convert 2880 a. to revolutions. b. to radians.Ch. 9.1 - Convert 25 rad a. to revolutions. b. to degrees.Ch. 9.1 - Convert 12.0 revolutions a. to radians. b. to...Ch. 9.1 - Number of revolutions = 525 t = 3.42 min = ______...Ch. 9.1 - Number of revolutions = 7360 t = 37.0 s = _______...Ch. 9.1 - Number of revolutions = 4.00 t = 3.00 s =...Ch. 9.1 - Number of re volutions = 325 t = 5.00 min =...Ch. 9.1 - Number of revolutions = 6370 t = 18.0s = ________...Ch. 9.1 - Number of revolutions = 6.25 t = 5.05 s =...
Ch. 9.1 - Convert 675 rad/s to rpm.Ch. 9.1 - Convert 285 rpm to rad/s.Ch. 9.1 - Convert 136 rpm to rad/s.Ch. 9.1 - Convert 88.4 rad/s to rpm.Ch. 9.1 - A motor turns at a rate of 11.0 rev/s. Find its...Ch. 9.1 - A rotor turns at a rate 180 rpm. Find its angular...Ch. 9.1 - A rotating wheel completes one revolution in 0.150...Ch. 9.1 - A rotor completes 50.0 revolutions in 3.25 s. Find...Ch. 9.1 - A flywheel rotates at 1050 rpm. (a) How long (in...Ch. 9.1 - A wheel rotates at 36.0 rad/s. (a) How long (in s)...Ch. 9.1 - A shaft of radius 8.50 cm rotates 7.00 rad/s. Find...Ch. 9.1 - Awheel of radius 0.240 m turns at 4.00 rev/s. Find...Ch. 9.1 - A pendulum of length 1.50 m swings through an arc...Ch. 9.1 - An airplane circles an airport twice while 5.00 mi...Ch. 9.1 - A wheel of radius 27.0 cm has an angular speed of...Ch. 9.1 - A belt is placed around a pulley that is 30.0 cm...Ch. 9.1 - A flywheel of radius 25.0 cm is rotating at 655...Ch. 9.1 - An airplane propeller with blades 2.00 m long is...Ch. 9.1 - An automobile is traveling at 60.0 km/h. Its tires...Ch. 9.1 - Ftnd the angular speed (in rad/s) of the following...Ch. 9.1 - A bicycle wheel of diameter 30 0 in rotates twice...Ch. 9.1 - A point on the rim of a flywheel with radius 1.50...Ch. 9.1 - The earth rotates on its axis at an angular speed...Ch. 9.1 - A truck tire rotates at an initial angular speed...Ch. 9.1 - Find the angular acceleration of a radiator fan...Ch. 9.1 - A wheel of radius 20.0 cm starts from rest and...Ch. 9.1 - A circular disk 30.0 cm in diameter is rotating at...Ch. 9.1 - A rotating flywheel of diameter 40.0 cm uniformly...Ch. 9.3 - Given: m = 64.0 kg = 34.0 m/s r = 17.0 m F =...Ch. 9.3 - Given: m = 11.3 slugs = 3.00 ft/s r = 3.24 ft F =...Ch. 9.3 - Given: F = 2500 lb = 47.6 ft/s r = 72.0 ft m =...Ch. 9.3 - Given: F = 587 N = 0.780 m/s m = 67.0 kg r =...Ch. 9.3 - Given: F = 602 N m = 63.0 kg r = 3.20 m =...Ch. 9.3 - Given: m = 37.5 kg = 17.0 m/s r = 3.75 m F =...Ch. 9.3 - Given: F = 75.0 N = 1.20 m/s m = 100 kg r =...Ch. 9.3 - Given: F = 80.0 N m = 43.0 kg r = 17.5 m =...Ch. 9.3 - An automobile of mass 117 slugs follows a curve of...Ch. 9.3 - Find the centripetal force exerted on a 7.12-kg...Ch. 9.3 - The centripetal force on a car of mass 800kg...Ch. 9.3 - The centripetal force on a runner is 17.0 lb. If...Ch. 9.3 - An automobile with mass 1650 kg is driven around a...Ch. 9.3 - A cycle of mass 510 kg rounds a curve of radius 40...Ch. 9.3 - What is the centripetal force exerted on a rock...Ch. 9.3 - What is the centripetal force on a 1500-kg vehicle...Ch. 9.3 - What is the centripetal force on a 750-kg vehicle...Ch. 9.3 - A truck with mass 215 slugs rounds a curve of...Ch. 9.3 - A 225-kg dirt bike is rounding a curve with linear...Ch. 9.3 - A 55,000-kg truck rounds a curve at 62.0 km/h. If...Ch. 9.3 - The radius of a curve is 27.5 m. What is the...Ch. 9.4 - Given: = 125 lb ft = 555 rpm P = ________ ft...Ch. 9.4 - Given: = 39.4 N m = 6.70/s P = _________ WCh. 9.4 - Given: = 372 lb ft = 264 rpm P = __________ hpCh. 9.4 - Given: = 650 N m = 45.0/s P = _________ kWCh. 9.4 - Giver: P = 8950W = 4.80/s = _____________Ch. 9.4 - Given: P = 650W = 540 N m = ________Ch. 9.4 - What horsepower is developed by an engine with...Ch. 9.4 - What torque must be applied to develop 175 ft fb/s...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - A high-speed industrial drill develops 0.500 hp at...Ch. 9.4 - An engine has torque of 550 N m at 8.3 rad/s. What...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - What power (in hp) is developed by an engine with...Ch. 9.4 - Find the angular velocity of a motor developing...Ch. 9.4 - A drill develops 0.500 kW of power at 1800 rpm....Ch. 9.4 - What power is developed by an engine with torque...Ch. 9.4 - A tangential force of 150 N is applied to a...Ch. 9.4 - Find the power developed by an engine with a...Ch. 9.4 - Find the power developed by an engine with a...Ch. 9.4 - Find the power developed by an engine with torque...Ch. 9.4 - Find the angular velocity of a motor daveloping...Ch. 9.4 - A motor develops 0.75 kW of power at 2000...Ch. 9.4 - What power is developed when a tangential force of...Ch. 9.4 - What power is developed when a tangential force of...Ch. 9.4 - An engine develops 1.50 kW of power at 10,000...Ch. 9.4 - A mechanic tightens engine bolts using 45.5 N m of...Ch. 9.4 - An ag mechanic tightens implement bolts using 52.5...Ch. 9.6 - Prob. 1PCh. 9.6 - Prob. 2PCh. 9.6 - Prob. 3PCh. 9.6 - Prob. 4PCh. 9.6 - Prob. 5PCh. 9.6 - Prob. 6PCh. 9.6 - A driver gear has 36 teeth and makes 85.0 rpm....Ch. 9.6 - A motor turning at 1250 rpm is fitted with a gear...Ch. 9.6 - A gear running at 250 rpm meshes with another...Ch. 9.6 - A driver gear with 40 teeth makes 154 rpm. How...Ch. 9.6 - Two gears have a speed ratio of 4.2 to 1. If the...Ch. 9.6 - What size gear should be meshed with a 15-tooth...Ch. 9.6 - A driver gear has 72 teeth and makes 162 rpm. Find...Ch. 9.6 - A driver gear with 60 teeth makes 1600 rpm. How...Ch. 9.6 - What size gear should be meshed with a 20-tooth...Ch. 9.6 - A motor turning at 1500 rpm is fitted with a gear...Ch. 9.6 - The larger of two gears in a clock has 36 teeth...Ch. 9.6 - How many revolutions does an 88-tooth gear make in...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - If gear A turns in a clockwise motion, determine...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the speed in rpm of gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each rear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the number of teeth for gear D in each gear...Ch. 9.6 - Find the direction of rotation of gear B if gear A...Ch. 9.6 - Find the effect of doubling the number of teeth on...Ch. 9.7 - Find each missing quantity using DN = dn. 1.Ch. 9.7 - Find each missing quantity using DN = dn. 2.Ch. 9.7 - Find Bach missing quantity using DN = dn. 3.Ch. 9.7 - Find each missing quantity using DN = dn. 4.Ch. 9.7 - Find each missing quantity using DN = dn. 5.Ch. 9.7 - A driver pulley of diameter 6.50 in. revolves at...Ch. 9.7 - A driver pulley of diameter 25.0 cm revolves at...Ch. 9.7 - One pulley of diameter 36.0 cm revolves at 600...Ch. 9.7 - One pulley rotates at 450 rpm. The diameter of the...Ch. 9.7 - A pulley with a radius of 10.0 cm rotates at 120...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - Determine the direction of pulley B in each pulley...Ch. 9.7 - What size pulley should be placed on a...Ch. 9 - Angular velocity is measured in a....Ch. 9 - Power in the rotational system a. is found in the...Ch. 9 - A gear train has 13 directly connected gears. The...Ch. 9 - Distinguish between curvilinear motion and...Ch. 9 - Name the two types of measurement of rotation.Ch. 9 - In your own words, define radian.Ch. 9 - What is angular displacement? In what units is it...Ch. 9 - How is linear velocity of a point on a circle...Ch. 9 - How do equations for uniformly accelerated...Ch. 9 - A girl jumping from a high platform into a pool...Ch. 9 - Is the tangent to a circle always perpendicular to...Ch. 9 - Will inertia tend to keep a moving body following...Ch. 9 - Explain the relationship between the number of...Ch. 9 - How does the presence of an idler gear affect the...Ch. 9 - When the number of directly connected gears in a...Ch. 9 - How do pulley combination equations compare to...Ch. 9 - If a large pulley and a small pulley are connected...Ch. 9 - How do we know the belt connecting two pulleys...Ch. 9 - Convert 13 revolutions to (a) radians and...Ch. 9 - A bicycle wheel turns 25 rad during 45 s. Find the...Ch. 9 - A lawn tractor tire turns at 65.0 rpm and has a...Ch. 9 - A model plane pulls into a tight curve of a radius...Ch. 9 - A 0.950-kg mass is spun in a circle on a string of...Ch. 9 - A girl riding her bike creates a torque of 1.20 lb...Ch. 9 - A motor generates 300 W of power. The torque...Ch. 9 - Two rollers are side by side, with the large one...Ch. 9 - A clock is driven by a series of gears. The first...Ch. 9 - Two gears have 13 and 26 teeth, respectively. The...Ch. 9 - A gear train has 17 directly connected gears. Do...Ch. 9 - A pulley of diameter 14.0 cm is driven by an...Ch. 9 - A pulley of diameter 5.00 cm is driven at 100 rpm....Ch. 9 - If gear C turns counterclockwise, in what...Ch. 9 - Find the speed in rpm of gear D.Ch. 9 - Find the number of teeth in gear D.Ch. 9 - As part of their training, NASA astronauts are...Ch. 9 - Waterwheels are used to convert kinetic energy...Ch. 9 - A hairpin turn on a concrete racetrack has a...Ch. 9 - (a) How much power does a motorcycle need to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
33. Consider the reaction:
The tabulated data were collected for the concentration of C4H8 as a function...
Chemistry: Structure and Properties (2nd Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
58. Is each compound soluble or insoluble? For the soluble compounds, identify the ions present in solution.
a....
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Treadarrow_forwardA person on horseback is on a drawbridge which is at an angle = 20.0° above the horizontal, as shown in the figure. The center of mass of the person-horse system is d = 1.35 m from the end of the bridge. The bridge is l = 7.00 m long and has a mass of 2,300 kg. A cable is attached to the bridge 5.00 m from the frictionless hinge and to a point on the wall h = 12.0 m above the bridge. The mass of person plus horse is 1,100 kg. Assume the bridge is uniform. Suddenly (and most unfortunately for the horse and rider), the ledge where the bridge usually rests breaks off, and at the same moment the cable snaps and the bridge swings down until it hits the wall. ÚI MAJI A TLA MAJA AUTA (a) Find the angular acceleration (magnitude, in rad/s²) of the bridge once it starts to move. 2.22 Use the rotational analogue of Newton's second law. The drawbridge can be modeled as a rod, with rotation axis about one end. rad/s² (b) How long (in s) does the horse and rider stay in contact with the bridge…arrow_forwardTwo long, parallel wires carry currents of I₁ = 2.70 A and I2 = 4.85 A in the directions indicated in the figure below, where d = 22.0 cm. (Take the positive x direction to be to the right.) 12 (a) Find the magnitude and direction of the magnetic field at a point midway between the wires. magnitude direction 3.91 270 μπ ⚫ counterclockwise from the +x axis (b) Find the magnitude and direction of the magnetic field at point P, located d = 22.0 cm above the wire carrying the 4.85-A current. magnitude direction Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. μT The response you submitted has the wrong sign.° counterclockwise from the +x axisarrow_forward
- O Macmillan Learning The mass of a particular eagle is twice that of a hunted pigeon. Suppose the pigeon is flying north at Vi2 = 16.1 m/s when the eagle swoops down, grabs the pigeon, and flies off. At the instant right before the attack, the eagle is flying toward the pigeon at an angle 0 = 64.3° below the horizontal and a speed of Vi,1 = 37.9 m/s. What is the speed of of the eagle immediately after it catches its prey? What is the magnitude & of the angle, measured from horizontal, at which the eagle is flying immediately after the strike? Uf = II x10 TOOLS Vi.1 Vi,2 m/sarrow_forwardWhat is the equivalent resistance if you connect a 1.7 Ohm, a 9.3 Ohm, and a 22 Ohm resistor in series? (Give your answer as the number of Ohms.)arrow_forwardThree wires meet at a junction. One wire carries a current of 5.2 Amps into the junction, and a second wire carries a current of 3.7 Amps out of the junction. What is the current in the third wire? Give your answer as the number of Amps, and give a positive number if the current in that wire flows out of the junction, or a negative number if the current in that wire flows into the junction.arrow_forward
- What is the equivalent resistance if you connect a 4.5 Ohm, a 6.8 Ohm, and a 15 Ohm resistor in parallel? (Give your answer as the number of Ohms.)arrow_forwardSuppose a heart defibrillator passes 10.5 Amps of current through a patient's torso for 5.0 x 10-3 seconds in order to restore a regular heartbeat. The voltage across the defibrillator is 9800 volts for the entire time that current is flowing. If 7.25 kg of body tissue is involved, with a specific heat of 3500 J/(kg°C), then what is the resulting temperature increase of the person's torso? (Give your answer as the number of degrees C.)arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I₁ = 1.04 A out of the page and the current in the outer conductor is I2 = 2.90 A into the page. Assuming the distance d = 1.00 mm, answer the following. 4 12 (a) Determine the magnitude and direction of the magnetic field at point a. magnitude 208 direction upward (b) Determine the magnitude and direction of the magnetic field at point b. magnitude direction 238 You can approach this problem by finding the field produced by current I₁ and the field produced by I2 and then adding them vectorially. μT downwardarrow_forward
- Shoto, from My Hero Academia, has a power (or a “quirk”) that allows him to make large amounts of ice from nothing. Let us say that due to a fire a 361 kg steel beam is heated to 943.˚C and Shoto creates 390. kg of ice at 0.00˚C around it to cool it down. What is the final temperature of the system after the ice melts and it reaches thermal equilibrium? The specific heat of steel is 502 J/kg˚C. The specific heat of water is 4186 J/kg˚C. The latent heat of fusion for ice is 3.33⋅10^5 J/kg.arrow_forwardA 25.0 cm long organ pipe is filled with air and is open at one end and closed at the other. The speed of sound in air at 0°C is 331 m/s. What is the frequency of the fourth mode of vibration? Multiple Choice О 1,550 Hz О 1,750 Hz О 2,320 Hz О 2,720 Hz О 3,170 Hzarrow_forward23.4 g of coffee beans at room temperature (18.6 °C) is mixed into 316 g of water at 96.8 °C in an effort to make coffee. The entire system is poured in a 363 g ceramic mug. Assume the mug is initally also at room temperature (18.6 °C). What is the final temperature of the mixture? The specific heat of ground coffee beans is 1670 J/kg˚C, the specific heat of water is 4186 J/kg˚C, and the specific heat of the mug is 850. J/kg˚C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY