
EBK CALCULUS FOR THE LIFE SCIENCES
2nd Edition
ISBN: 9780321964458
Author: Lial
Publisher: PEARSON EDUCATION (COLLEGE)
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.5, Problem 9E
To determine
To find:
The value of the given
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
uestion 10 of 12 A
Your answer is incorrect.
L
0/1 E
This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also
function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating
in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1
80
(mph)
Normal hybrid-
40
EV-only
t (sec)
5
15
25
Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path
from a stoplight. Approximately how far apart are the cars after 15 seconds?
Round your answer to the nearest integer.
The cars are
1
feet apart after 15 seconds.
Q Search
M
34
mlp
CH
Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and
x-2y= 8.
Round your answer to four decimal places.
У
Suppose that f(x, y) =
· at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}.
1+x
D
Q
Then the double integral of f(x, y) over D is
|| | f(x, y)dxdy = |
Round your answer to four decimal places.
Chapter 9 Solutions
EBK CALCULUS FOR THE LIFE SCIENCES
Ch. 9.1 - YOUR TURN For the function in Example 1, find...Ch. 9.1 - Prob. 2YTCh. 9.1 - Prob. 3YTCh. 9.1 - EXERCISES Let f(x,y)=2x3y+5.Find the following. a....Ch. 9.1 - Prob. 2ECh. 9.1 - EXERCISES Let h(x,y)=x2+2y2. Find the following....Ch. 9.1 - EXERCISES Let f(x,y)=9x+5ylogx. Find the...Ch. 9.1 - EXERCISES Let f(x,y)=ex+ln(x+y). Find the...Ch. 9.1 - EXERCISES Let f(x,y)=xex+y. Find the following. a....Ch. 9.1 - EXERCISES Let f(x,y)=xsin(x2y). Find the...
Ch. 9.1 - EXERCISES Let f(x,y)=ycos(x+y).Find the following....Ch. 9.1 - EXERCISES Graph the level curves in the first...Ch. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - Match each equation in Exercise 2530with its graph...Ch. 9.1 - Prob. 31ECh. 9.1 - Prob. 32ECh. 9.1 - Let f(x,y)=xyex2+y2. Use a graphing calculator or...Ch. 9.1 - The following table provides values of the...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Life Span Researchers...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Heat Loss The rate of...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Body Surface Area The...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Dinosaur Running An...Ch. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Agriculture Pregnant sows tethered in stalls often...Ch. 9.1 - Prob. 44ECh. 9.1 - Total Body Water Accurate prediction of total body...Ch. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.2 - YOUR TURN Let f(x,y)=2x2y3+6x5y4. Find fx(x,y) and...Ch. 9.2 - Prob. 2YTCh. 9.2 - Prob. 3YTCh. 9.2 - Prob. 4YTCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - In Exercise 3-22 find fx(x,y)and fy(x,y).Then find...Ch. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - LIFE SCIENCE APPLICATIONS Calorie Expenditure The...Ch. 9.2 - Prob. 50ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.2 - Prob. 54ECh. 9.2 - Prob. 55ECh. 9.2 - Prob. 57ECh. 9.2 - Prob. 58ECh. 9.2 - Prob. 59ECh. 9.2 - Prob. 60ECh. 9.2 - Prob. 62ECh. 9.2 - Prob. 63ECh. 9.2 - Prob. 66ECh. 9.2 - Prob. 67ECh. 9.2 - Prob. 68ECh. 9.2 - Prob. 69ECh. 9.3 - Prob. 1YTCh. 9.3 - Prob. 2YTCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Find all points where the functions have any...Ch. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - Prob. 27ECh. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Let f(x,y)=y22x2y+4x3+20x2. The only critical...Ch. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Prob. 35ECh. 9.3 - Prob. 37ECh. 9.3 - Prob. 38ECh. 9.3 - Prob. 39ECh. 9.3 - Prob. 40ECh. 9.3 - Prob. 41ECh. 9.4 - Prob. 1YTCh. 9.4 - Prob. 2YTCh. 9.4 - Prob. 3YTCh. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Evaluate dzusing the given the information....Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Prob. 16ECh. 9.4 - Blood Vessel Volume A portion of a blood vessel is...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Dialysis A model that estimates the concentration...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Eastern Hemlock Ring shake, which is the...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.5 - Prob. 1YTCh. 9.5 - Prob. 2YTCh. 9.5 - Prob. 3YTCh. 9.5 - Prob. 4YTCh. 9.5 - Prob. 5YTCh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - EXERCISES Evaluate each integral. 15ye4x+y2dxCh. 9.5 - EXERCISES Evaluate each iterated integral. Many of...Ch. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 26ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 36ECh. 9.5 - Prob. 37ECh. 9.5 - Prob. 38ECh. 9.5 - Prob. 39ECh. 9.5 - Prob. 40ECh. 9.5 - Prob. 41ECh. 9.5 - Prob. 42ECh. 9.5 - Prob. 43ECh. 9.5 - Prob. 44ECh. 9.5 - Prob. 45ECh. 9.5 - Prob. 46ECh. 9.5 - Prob. 47ECh. 9.5 - Prob. 48ECh. 9.5 - Prob. 49ECh. 9.5 - Prob. 50ECh. 9.5 - Prob. 51ECh. 9.5 - Prob. 52ECh. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - Prob. 55ECh. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - Prob. 57ECh. 9.5 - Prob. 58ECh. 9.5 - Prob. 59ECh. 9.5 - Prob. 60ECh. 9.5 - Prob. 61ECh. 9.5 - Prob. 63ECh. 9.5 - Prob. 64ECh. 9.5 - Prob. 65ECh. 9.5 - Prob. 66ECh. 9.5 - Prob. 67ECh. 9.5 - Prob. 68ECh. 9.5 - Prob. 69ECh. 9.5 - Prob. 70ECh. 9.CR - Determine whether each of the following statements...Ch. 9.CR - Prob. 2CRCh. 9.CR - Prob. 3CRCh. 9.CR - Prob. 4CRCh. 9.CR - Prob. 5CRCh. 9.CR - Prob. 6CRCh. 9.CR - Prob. 7CRCh. 9.CR - Prob. 8CRCh. 9.CR - Prob. 9CRCh. 9.CR - Prob. 10CRCh. 9.CR - Prob. 11CRCh. 9.CR - Prob. 12CRCh. 9.CR - Prob. 13CRCh. 9.CR - Prob. 14CRCh. 9.CR - Prob. 15CRCh. 9.CR - Prob. 16CRCh. 9.CR - Prob. 17CRCh. 9.CR - Prob. 18CRCh. 9.CR - Prob. 19CRCh. 9.CR - Prob. 20CRCh. 9.CR - Prob. 21CRCh. 9.CR - Prob. 22CRCh. 9.CR - Prob. 23CRCh. 9.CR - Prob. 24CRCh. 9.CR - Prob. 25CRCh. 9.CR - Prob. 26CRCh. 9.CR - Prob. 27CRCh. 9.CR - Prob. 28CRCh. 9.CR - Prob. 29CRCh. 9.CR - Prob. 30CRCh. 9.CR - Prob. 31CRCh. 9.CR - Prob. 32CRCh. 9.CR - Prob. 33CRCh. 9.CR - Prob. 34CRCh. 9.CR - Prob. 35CRCh. 9.CR - Prob. 36CRCh. 9.CR - Prob. 37CRCh. 9.CR - Prob. 38CRCh. 9.CR - Prob. 39CRCh. 9.CR - Prob. 40CRCh. 9.CR - Prob. 41CRCh. 9.CR - Prob. 42CRCh. 9.CR - Prob. 43CRCh. 9.CR - Prob. 44CRCh. 9.CR - Prob. 45CRCh. 9.CR - Prob. 46CRCh. 9.CR - Prob. 47CRCh. 9.CR - Prob. 48CRCh. 9.CR - Prob. 49CRCh. 9.CR - Prob. 50CRCh. 9.CR - Prob. 51CRCh. 9.CR - Prob. 52CRCh. 9.CR - Prob. 53CRCh. 9.CR - Prob. 54CRCh. 9.CR - Prob. 55CRCh. 9.CR - Prob. 56CRCh. 9.CR - Prob. 57CRCh. 9.CR - Prob. 58CRCh. 9.CR - Prob. 59CRCh. 9.CR - Prob. 60CRCh. 9.CR - Prob. 61CRCh. 9.CR - Prob. 62CRCh. 9.CR - Prob. 63CRCh. 9.CR - Prob. 64CRCh. 9.CR - Prob. 65CRCh. 9.CR - Prob. 66CRCh. 9.CR - Prob. 67CRCh. 9.CR - Prob. 68CRCh. 9.CR - Prob. 69CRCh. 9.CR - Prob. 70CRCh. 9.CR - Prob. 71CRCh. 9.CR - Prob. 72CRCh. 9.CR - Prob. 73CRCh. 9.CR - Prob. 74CRCh. 9.CR - Prob. 75CRCh. 9.CR - Prob. 76CRCh. 9.CR - Prob. 77CRCh. 9.CR - Prob. 78CRCh. 9.CR - Prob. 79CRCh. 9.CR - Prob. 80CRCh. 9.CR - Prob. 81CRCh. 9.CR - Prob. 82CRCh. 9.CR - Prob. 83CRCh. 9.CR - Prob. 84CRCh. 9.CR - Prob. 85CRCh. 9.CR - Prob. 86CRCh. 9.CR - Prob. 88CRCh. 9.CR - Prob. 89CRCh. 9.CR - Prob. 90CRCh. 9.CR - Prob. 91CRCh. 9.CR - Prob. 92CRCh. 9.CR - Prob. 93CRCh. 9.CR - Prob. 94CRCh. 9.CR - Prob. 95CRCh. 9.CR - Prob. 96CRCh. 9.CR - Prob. 97CRCh. 9.CR - Production Error The height of a sample cone from...Ch. 9.CR - Prob. 99CRCh. 9.EA - Prob. 1EACh. 9.EA - Prob. 2EA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- D The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forwardFind the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forward
- Given D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forwardThis way the ratio test was done in this conflicts what I learned which makes it difficult for me to follow. I was taught with the limit as n approaches infinity for (an+1)/(an) = L I need to find the interval of convergence for the series tan-1(x2). (The question has a table of Maclaurin series which I followed as well) https://www.bartleby.com/solution-answer/chapter-92-problem-7e-advanced-placement-calculus-graphical-numerical-algebraic-sixth-edition-high-school-binding-copyright-2020-6th-edition/9781418300203/2c1feea0-c562-4cd3-82af-bef147eadaf9arrow_forwardSuppose that f(x, y) = y√√r³ +1 on the domain D = {(x, y) | 0 ≤y≤x≤ 1}. D Then the double integral of f(x, y) over D is [ ], f(x, y)dzdy =[ Round your answer to four decimal places.arrow_forward
- Consider the function f(x) = 2x² - 8x + 3 over the interval 0 ≤ x ≤ 9. Complete the following steps to find the global (absolute) extrema on the interval. Answer exactly. Separate multiple answers with a comma. a. Find the derivative of f (x) = 2x² - 8x+3 f'(x) b. Find any critical point(s) c within the intervl 0 < x < 9. (Enter as reduced fraction as needed) c. Evaluate the function at the critical point(s). (Enter as reduced fraction as needed. Enter DNE if none of the critical points are inside the interval) f(c) d. Evaluate the function at the endpoints of the interval 0 ≤ x ≤ 9. f(0) f(9) e. Based on the above results, find the global extrema on the interval and where they occur. The global maximum value is at a The global minimum value is at xarrow_forwardDetermine the values and locations of the global (absolute) and local extrema on the graph given. Assume the domain is a closed interval and the graph represents the entirety of the function. 3 y -6-5-4-3 2 1 -1 -2 -3 Separate multiple answers with a comma. Global maximum: y Global minimum: y Local maxima: y Local minima: y x 6 at a at a at x= at x=arrow_forwardA ball is thrown into the air and its height (in meters) is given by h (t) in seconds. -4.92 + 30t+1, where t is a. After how long does the ball reach its maximum height? Round to 2 decimal places. seconds b. What is the maximum height of the ball? Round to 2 decimal places. metersarrow_forward
- Determine where the absolute and local extrema occur on the graph given. Assume the domain is a closed interval and the graph represents the entirety of the function. 1.5 y 1 0.5 -3 -2 -0.5 -1 -1.5 Separate multiple answers with a comma. Absolute maximum at Absolute minimum at Local maxima at Local minima at a x 2 3 аarrow_forwardA company that produces cell phones has a cost function of C = x² - 1000x + 36100, where C is the cost in dollars and x is the number of cell phones produced (in thousands). How many units of cell phones (in thousands) minimizes this cost function? Round to the nearest whole number, if necessary. thousandarrow_forwardUnder certain conditions, the number of diseased cells N(t) at time t increases at a rate N'(t) = Aekt, where A is the rate of increase at time 0 (in cells per day) and k is a constant. (a) Suppose A = 60, and at 3 days, the cells are growing at a rate of 180 per day. Find a formula for the number of cells after t days, given that 200 cells are present at t = 0. (b) Use your answer from part (a) to find the number of cells present after 8 days. (a) Find a formula for the number of cells, N(t), after t days. N(t) = (Round any numbers in exponents to five decimal places. Round all other numbers to the nearest tenth.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY