Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version
8th Edition
ISBN: 9781119080701
Author: Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.5, Problem 1LLP
To determine

The information about the PIV technique and its advantages.

Expert Solution & Answer
Check Mark

Explanation of Solution

The PIV technique is stands for Particle Image Velocimetry technique. The PIV technique is used for the, measurement of the velocity field and visualization of the flow.

The steps used in the PIV technique are as follows.

  • In the first step, we trace the flow with the help of suitable seed particles to obtain the path lines.
  • Then a pulse laser light is used to illuminate the flow region and record the view with the help of a video camera.
  • Then particles are illuminated with the help of a laser light and again a new view is recorded.
  • By comparing both the views its displacement and velocity is calculated.

The advantages of PIV technique are listed below.

  • The velocity of the flow field can be calculated by using the PIV technique.
  • The very high accuracy can be maintained.
  • The flows can be measure in 3-D space using the PIV technique.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The wall of a furnace has a thickness of 5 cm and thermal conductivity of 0.7 W/m-°C. The inside surface is heated by convection with a hot gas at 402°C and a heat transfer coefficient of 37 W/m²-°C. The outside surface has an emissivity of 0.8 and is exposed to air at 27°C with a heat transfer coefficient of 20 W/m²-ºC. Assume that the furnace is inside a large room with walls, floor and ceiling at 27°C. Show the thermal circuit and determine the heat flux through the furnace wall. h₁ T₁ k -L T. sur ho E
Turbomachienery .   GIven:  vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3   Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram     Use this code for plot      % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3)   S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)];   S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)];   U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)];   S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)];   U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)];   plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylabel('y'), grid
To save fuel during the heating season it is suggested that glass windows be covered at night with a 1.2 cm layer of polystyrene. Estimate the percent savings in energy and discuss the feasibility of this idea. Show the thermal circuit with and without the insulation panel. Consider a typical case of 0.2 cm thick window glass with inside and outside heat transfer coefficients of 6 and 32 W/m²-ºC. Lg←←Lp h T₁ T。 g kp insulation panel

Chapter 9 Solutions

Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, Binder Ready Version

Ch. 9.2 - Water flows past a flat plate that is oriented...Ch. 9.2 - A viscous fluid flows past a flat plate such that...Ch. 9.2 - Prob. 15PCh. 9.2 - Prob. 16PCh. 9.2 - Prob. 17PCh. 9.2 - Prob. 18PCh. 9.2 - Air enters a square duct through a 1-ft opening as...Ch. 9.2 - A smooth, flat plate of length and width b = 4 m...Ch. 9.2 - An atmospheric boundary layer is formed when the...Ch. 9.2 - Prob. 22PCh. 9.2 - Prob. 23PCh. 9.2 - Prob. 25PCh. 9.2 - Prob. 26PCh. 9.2 - Prob. 27PCh. 9.2 - Prob. 28PCh. 9.2 - Prob. 29PCh. 9.2 - Prob. 30PCh. 9.2 - A laminar boundary layer velocity profile is...Ch. 9.2 - Prob. 32PCh. 9.2 - Prob. 33PCh. 9.3 - Should a canoe paddle be made rough to get a...Ch. 9.3 - Prob. 35PCh. 9.3 - Prob. 36PCh. 9.3 - Prob. 37PCh. 9.3 - Prob. 38PCh. 9.3 - Prob. 39PCh. 9.3 - Prob. 40PCh. 9.3 - Prob. 41PCh. 9.3 - Prob. 42PCh. 9.3 - Prob. 43PCh. 9.3 - Prob. 44PCh. 9.3 - Prob. 45PCh. 9.3 - Prob. 46PCh. 9.3 - Prob. 47PCh. 9.3 - Prob. 48PCh. 9.3 - Prob. 49PCh. 9.3 - Prob. 50PCh. 9.3 - Prob. 51PCh. 9.3 - Prob. 52PCh. 9.3 - Prob. 53PCh. 9.3 - Prob. 54PCh. 9.3 - Prob. 55PCh. 9.3 - Prob. 56PCh. 9.3 - A 38.1-mm-diameter, 0.0245-N table tennis ball is...Ch. 9.3 - Prob. 58PCh. 9.3 - Prob. 59PCh. 9.3 - Prob. 60PCh. 9.3 - Prob. 61PCh. 9.3 - Prob. 62PCh. 9.3 - Prob. 63PCh. 9.3 - Prob. 64PCh. 9.3 - Prob. 65PCh. 9.3 - Prob. 66PCh. 9.3 - During a flash flood, water rushes over a road as...Ch. 9.3 - Prob. 68PCh. 9.3 - Prob. 69PCh. 9.3 - Prob. 70PCh. 9.3 - Prob. 71PCh. 9.3 - Prob. 72PCh. 9.3 - Phil’s Pizza Parlor decides to place a thin,...Ch. 9.3 - Prob. 74PCh. 9.3 - Prob. 75PCh. 9.3 - Estimate the energy required for an average person...Ch. 9.3 - a vertical wind tunnel can be used for skydiving...Ch. 9.3 - Compare the rise velocity of an -in.-diameter air...Ch. 9.3 - A 50-lb box shaped like a 1-ft cube falls from the...Ch. 9.3 - A 500-N cube of specific gravity SG = 1.8 falls...Ch. 9.3 - The helium-filled balloon shown in Fig P9.81 is to...Ch. 9.3 - A 0.30-m-diameter cork ball (SG = 0.21) is tied to...Ch. 9.3 - A shortwave radio antenna is constructed from...Ch. 9.3 - Prob. 84PCh. 9.3 - Prob. 85PCh. 9.3 - Prob. 86PCh. 9.3 - Prob. 87PCh. 9.3 - Prob. 88PCh. 9.3 - A smooth orange ball weighs lb (at sea level) and...Ch. 9.3 - Prob. 90PCh. 9.3 - A marine location marker is a smoke-producing...Ch. 9.3 - Prob. 92PCh. 9.3 - An airplane flies at 150 km/hr. (a) The airplane...Ch. 9.3 - Prob. 94PCh. 9.3 - Prob. 96PCh. 9.3 - Prob. 97PCh. 9.3 - Prob. 98PCh. 9.3 - Prob. 99PCh. 9.4 - Prob. 100PCh. 9.4 - Prob. 101PCh. 9.4 - Prob. 102PCh. 9.4 - Prob. 103PCh. 9.4 - Prob. 104PCh. 9.4 - Prob. 105PCh. 9.4 - Prob. 106PCh. 9.4 - Prob. 107PCh. 9.4 - Prob. 108PCh. 9.4 - Prob. 109PCh. 9.4 - Prob. 111PCh. 9.4 - Prob. 112PCh. 9.4 - Prob. 113PCh. 9.4 - Prob. 114PCh. 9.4 - Prob. 115PCh. 9.4 - Prob. 116PCh. 9.4 - Prob. 117PCh. 9.4 - Prob. 118PCh. 9.4 - Prob. 119PCh. 9.4 - Prob. 120PCh. 9.4 - Prob. 121PCh. 9.4 - Prob. 122PCh. 9.4 - (See The Wide World of Fluids article “Why...Ch. 9.5 - Prob. 1LLPCh. 9.5 - Prob. 2LLPCh. 9.5 - We have seen in this chapter that streamlining an...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license