CALCULUS+ITS APPLICATIONS
15th Edition
ISBN: 9780137590612
Author: Goldstein
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.4, Problem 12E
To determine
To calculate: The approximate value of the integral
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
EXAMPLE 3
Find
S
X
√√2-2x2
dx.
SOLUTION Let u = 2 - 2x². Then du =
Χ
dx =
2- 2x²
=
信
du
dx, so x dx =
du and
u-1/2 du
(2√u) + C
+ C (in terms of x).
Let g(z) =
z-i
z+i'
(a) Evaluate g(i) and g(1).
(b) Evaluate the limits
lim g(z), and lim g(z).
2-12
(c) Find the image of the real axis under g.
(d) Find the image of the upper half plane {z: Iz > 0} under the function g.
k
(i) Evaluate
k=7
k=0
[Hint: geometric series + De Moivre]
(ii) Find an upper bound for the expression
1
+2x+2
where z lies on the circle || z|| = R with R > 10. [Hint: Use Cauchy-Schwarz]
Chapter 9 Solutions
CALCULUS+ITS APPLICATIONS
Ch. 9.1 - (Review) Differentiate the following functions:...Ch. 9.1 - Use the substitution u=3x to determine e3/xx2dx.Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...
Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Determine the integrals in Exercises 136 by making...Ch. 9.1 - Figure 1 shows graphs of several functions f(x)...Ch. 9.1 - Figure 2 shows graphs of several functions f(x)...Ch. 9.1 - Determine the following integrals using the...Ch. 9.1 - Determine the following integrals using indicated...Ch. 9.1 - Determine the following integrals using the...Ch. 9.1 - Determine the following integrals using the...Ch. 9.1 - Determine the following integrals by making an...Ch. 9.1 - Prob. 44ECh. 9.1 - Prob. 45ECh. 9.1 - Determine the following integrals by making an...Ch. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Determine the following integrals by making an...Ch. 9.1 - Prob. 50ECh. 9.1 - Prob. 51ECh. 9.1 - Prob. 52ECh. 9.1 - Determine 2x(x2+5)dx by making a substitution....Ch. 9.2 - Evaluate the following integral. xe3xdxCh. 9.2 - Evaluate the following integral. lnxdxCh. 9.2 - Evaluate the following integral. xe5xdxCh. 9.2 - Evaluate the following integral. xex2dxCh. 9.2 - Evaluate the following integral. x(x+7)4dxCh. 9.2 - Evaluate the following integral. x(2x+3)...Ch. 9.2 - Evaluate the following integral. xexdxCh. 9.2 - Evaluate the following integral. x2exdxCh. 9.2 - Evaluate the following integral. xx+1dxCh. 9.2 - Evaluate the following integral. x3+2xdxCh. 9.2 - Evaluate the following integral. e2x(13x)dxCh. 9.2 - Evaluate the following integral. (1+x)2e2xdxCh. 9.2 - Evaluate the following integral. 6xe3xdxCh. 9.2 - Evaluate the following integral. x+2e2xdxCh. 9.2 - Evaluate the following integral. xx+1dxCh. 9.2 - Evaluate the following integral. x2xdxCh. 9.2 - Evaluate the following integral. xlnxdxCh. 9.2 - Evaluate the following integral. x5lnxdxCh. 9.2 - Evaluate the following integral. xcosxdxCh. 9.2 - Evaluate the following integral. xsin8xdxCh. 9.2 - Evaluate the following integral. xln5xdxCh. 9.2 - Evaluate the following integral. x3lnxdxCh. 9.2 - Evaluate the following integral. lnx4dxCh. 9.2 - Evaluate the following integral. ln(lnx)xdxCh. 9.2 - Evaluate the following integral. x2exdxCh. 9.2 - Evaluate the following integral. lnx+1dxCh. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Evaluate the following integral using techniques...Ch. 9.2 - Figure 1 shows graphs of several functions f(x)...Ch. 9.2 - Figure 2 shows graphs of several functions f(x)...Ch. 9.2 - Evaluate xex(x+1)2dx using integration by parts....Ch. 9.2 - Evaluate x7ex4dx. [Hint: First, make a...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Prob. 4ECh. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Prob. 8ECh. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Prob. 13ECh. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals:...Ch. 9.3 - Evaluate the following definite integrals: 1elnxdxCh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - In Exercises 24 and 25, find the area of the...Ch. 9.3 - Prob. 25ECh. 9.4 - Consider 13.4(5x9)2dx. Divide the interval 1x3.4...Ch. 9.4 - Prob. 2CYUCh. 9.4 - Prob. 3CYUCh. 9.4 - Prob. 4CYUCh. 9.4 - Prob. 5CYUCh. 9.4 - Prob. 1ECh. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - Prob. 4ECh. 9.4 - Prob. 5ECh. 9.4 - Refer to the graph in Fig. 11. Apply the...Ch. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Prob. 12ECh. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Approximate the following integrals by the...Ch. 9.4 - Approximate the following integrals by the...Ch. 9.4 - Prob. 18ECh. 9.4 - Prob. 19ECh. 9.4 - Prob. 20ECh. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - The following integrals cannot be evaluated in...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.4 - Area To determine the amount of water flowing down...Ch. 9.4 - Distance Traveled Upon takeoff, the velocity...Ch. 9.4 - Prob. 28ECh. 9.4 - Prob. 29ECh. 9.4 - Consider 12f(x)dx, where f(x)=3lnx. Make a rough...Ch. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.4 - Prob. 36ECh. 9.4 - Technology Exercises In Exercises 3740,...Ch. 9.4 - Prob. 38ECh. 9.4 - Prob. 39ECh. 9.4 - Prob. 40ECh. 9.4 - Prob. 41ECh. 9.4 - Prob. 42ECh. 9.5 - The integral formula is used in many applications...Ch. 9.5 - Prob. 1ECh. 9.5 - Present valueA continuous stream of income is...Ch. 9.5 - Present valueFind the present value of a...Ch. 9.5 - Prob. 4ECh. 9.5 - Present value Find the present value of a...Ch. 9.5 - Present valueA continuous stream of income is...Ch. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.6 - Prob. 1CYUCh. 9.6 - Prob. 2CYUCh. 9.6 - Prob. 3CYUCh. 9.6 - In Exercises 1-12, determine if the given...Ch. 9.6 - Prob. 2ECh. 9.6 - Prob. 3ECh. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Prob. 8ECh. 9.6 - Prob. 9ECh. 9.6 - In Exercises 1-12, determine if the given...Ch. 9.6 - Prob. 11ECh. 9.6 - Prob. 12ECh. 9.6 - Find the area under the graph of y=1x2forx2.Ch. 9.6 - Prob. 14ECh. 9.6 - Find the area under the graph of y=ex/2forx0.Ch. 9.6 - Prob. 16ECh. 9.6 - Prob. 17ECh. 9.6 - Prob. 18ECh. 9.6 - Prob. 19ECh. 9.6 - Prob. 20ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 22ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 24ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 26ECh. 9.6 - Prob. 27ECh. 9.6 - Prob. 28ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 30ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 32ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 34ECh. 9.6 - Prob. 35ECh. 9.6 - Prob. 36ECh. 9.6 - Prob. 37ECh. 9.6 - Prob. 38ECh. 9.6 - Evaluate the following improper integrals whenever...Ch. 9.6 - Prob. 40ECh. 9.6 - Prob. 41ECh. 9.6 - Prob. 42ECh. 9.6 - Prob. 43ECh. 9.6 - Prob. 44ECh. 9.6 - Prob. 45ECh. 9.6 - Prob. 46ECh. 9.6 - Prob. 47ECh. 9.6 - Prob. 48ECh. 9.6 - Prob. 49ECh. 9.6 - Prob. 50ECh. 9 - Describe integration by substitution in your own...Ch. 9 - Prob. 2FCCECh. 9 - Prob. 3FCCECh. 9 - Prob. 4FCCECh. 9 - Prob. 5FCCECh. 9 - Prob. 6FCCECh. 9 - Prob. 7FCCECh. 9 - Prob. 8FCCECh. 9 - Prob. 9FCCECh. 9 - Prob. 10FCCECh. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Determine the following indefinite integral:...Ch. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - Prob. 16RECh. 9 - Prob. 17RECh. 9 - Determine the following indefinite integral:...Ch. 9 - Prob. 19RECh. 9 - Prob. 20RECh. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Prob. 25RECh. 9 - Prob. 26RECh. 9 - Prob. 27RECh. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Prob. 30RECh. 9 - Prob. 31RECh. 9 - Prob. 32RECh. 9 - Prob. 33RECh. 9 - Prob. 34RECh. 9 - Prob. 35RECh. 9 - Prob. 36RECh. 9 - Evaluate the following definite integrals:...Ch. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Prob. 41RECh. 9 - Prob. 42RECh. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Prob. 45RECh. 9 - Prob. 46RECh. 9 - Evaluate the following improper integrals whenever...Ch. 9 - Prob. 48RECh. 9 - Prob. 49RECh. 9 - Prob. 50RECh. 9 - Prob. 51RECh. 9 - Prob. 52RECh. 9 - Prob. 53RECh. 9 - Prob. 54RECh. 9 - Prob. 55RECh. 9 - Prob. 56RECh. 9 - Prob. 57RECh. 9 - Prob. 58RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Hint: You may use the following derivative rules: ddxsin(x)=cos(x) ddxcos(x)=−sin(x) ddxln(x)=1x Find the equation of the tangent line to the curve y=4sinx at the point (π6,2).The equation of this tangent line isarrow_forwardQuestion Find the following limit. Select the correct answer below: 1 2 0 4 5x lim sin (2x)+tan 2 x→arrow_forward12. [0/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.022. Evaluate the indefinite integral. (Use C for the constant of integration.) sin(In 33x) dxarrow_forward
- 2. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.003.MI. Evaluate the integral by making the given substitution. (Use C for the constant of integration.) x³ + 3 dx, u = x² + 3 Need Help? Read It Watch It Master It SUBMIT ANSWER 3. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.006.MI. Evaluate the integral by making the given substitution. (Use C for the constant of integration.) | +8 sec² (1/x³) dx, u = 1/x7 Need Help? Read It Master It SUBMIT ANSWER 4. [-/1 Points] DETAILS MY NOTES SESSCALCET2 5.5.007.MI. Evaluate the indefinite integral. (Use C for the constant of integration.) √x27 sin(x28) dxarrow_forward53,85÷1,5=arrow_forward3. In the space below, describe in what ways the function f(x) = -2√x - 3 has been transformed from the basic function √x. The graph f(x) on the coordinate plane at right. (4 points) -4 -&- -3 -- -2 4 3- 2 1- 1 0 1 2 -N -1- -2- -3- -4- 3 ++ 4arrow_forward
- 2. Suppose the graph below left is the function f(x). In the space below, describe what transformations are occuring in the transformed function 3ƒ(-2x) + 1. The graph it on the coordinate plane below right. (4 points)arrow_forward1 1. Suppose we have the function f(x) = = and then we transform it by moving it four units to the right and six units down, reflecting it horizontally, and stretching vertically by 5 units. What will the formula of our new function g(x) be? (2 points) g(x) =arrow_forwardSuppose an oil spill covers a circular area and the radius, r, increases according to the graph shown below where t represents the number of minutes since the spill was first observed. Radius (feet) 80 70 60 50 40 30 20 10 0 r 0 10 20 30 40 50 60 70 80 90 Time (minutes) (a) How large is the circular area of the spill 30 minutes after it was first observed? Give your answer in terms of π. square feet (b) If the cost to clean the oil spill is proportional to the square of the diameter of the spill, express the cost, C, as a function of the radius of the spill, r. Use a lower case k as the proportionality constant. C(r) = (c) Which of the following expressions could be used to represent the amount of time it took for the radius of the spill to increase from 20 feet to 60 feet? r(60) - r(20) Or¹(80-30) r(80) - r(30) r-1(80) - r−1(30) r-1(60) - r¹(20)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY