Pearson eText for Calculus for the Life Sciences -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137553457
Author: Raymond Greenwell, Nathan Ritchey
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.3, Problem 37E
To determine
a.
To find:
The value of E prior to cooking and assume
To determine
b.
The total change in color of a potato strip that has been cooked for 10 minutes at
To determine
c.
The critical point and also the maximum, minimum, or saddle point occurs for the given condition
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.1 Limits
1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice.
x+3°
x+3*
x+3
(a) Is 5
(c) Does not exist
(b) is 6
(d) is infinite
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
Chapter 9 Solutions
Pearson eText for Calculus for the Life Sciences -- Instant Access (Pearson+)
Ch. 9.1 - YOUR TURN For the function in Example 1, find...Ch. 9.1 - Prob. 2YTCh. 9.1 - Prob. 3YTCh. 9.1 - EXERCISES Let f(x,y)=2x3y+5.Find the following. a....Ch. 9.1 - Prob. 2ECh. 9.1 - EXERCISES Let h(x,y)=x2+2y2. Find the following....Ch. 9.1 - EXERCISES Let f(x,y)=9x+5ylogx. Find the...Ch. 9.1 - EXERCISES Let f(x,y)=ex+ln(x+y). Find the...Ch. 9.1 - EXERCISES Let f(x,y)=xex+y. Find the following. a....Ch. 9.1 - EXERCISES Let f(x,y)=xsin(x2y). Find the...
Ch. 9.1 - EXERCISES Let f(x,y)=ycos(x+y).Find the following....Ch. 9.1 - EXERCISES Graph the level curves in the first...Ch. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - Match each equation in Exercise 2530with its graph...Ch. 9.1 - Prob. 31ECh. 9.1 - Prob. 32ECh. 9.1 - Let f(x,y)=xyex2+y2. Use a graphing calculator or...Ch. 9.1 - The following table provides values of the...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Life Span Researchers...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Heat Loss The rate of...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Body Surface Area The...Ch. 9.1 - LIFE SCIENCE APPLICATIONS Dinosaur Running An...Ch. 9.1 - Prob. 39ECh. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Agriculture Pregnant sows tethered in stalls often...Ch. 9.1 - Prob. 44ECh. 9.1 - Total Body Water Accurate prediction of total body...Ch. 9.1 - Prob. 46ECh. 9.1 - Prob. 47ECh. 9.1 - Prob. 48ECh. 9.1 - Prob. 49ECh. 9.1 - Prob. 50ECh. 9.2 - YOUR TURN Let f(x,y)=2x2y3+6x5y4. Find fx(x,y) and...Ch. 9.2 - Prob. 2YTCh. 9.2 - Prob. 3YTCh. 9.2 - Prob. 4YTCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Prob. 16ECh. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - In Exercise 3-22 find fx(x,y)and fy(x,y).Then find...Ch. 9.2 - Prob. 20ECh. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Prob. 30ECh. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.2 - Prob. 35ECh. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Prob. 38ECh. 9.2 - Prob. 39ECh. 9.2 - Prob. 40ECh. 9.2 - Prob. 41ECh. 9.2 - Prob. 42ECh. 9.2 - Prob. 43ECh. 9.2 - Prob. 44ECh. 9.2 - Prob. 45ECh. 9.2 - Prob. 46ECh. 9.2 - Prob. 47ECh. 9.2 - Prob. 48ECh. 9.2 - LIFE SCIENCE APPLICATIONS Calorie Expenditure The...Ch. 9.2 - Prob. 50ECh. 9.2 - Prob. 52ECh. 9.2 - Prob. 53ECh. 9.2 - Prob. 54ECh. 9.2 - Prob. 55ECh. 9.2 - Prob. 57ECh. 9.2 - Prob. 58ECh. 9.2 - Prob. 59ECh. 9.2 - Prob. 60ECh. 9.2 - Prob. 62ECh. 9.2 - Prob. 63ECh. 9.2 - Prob. 66ECh. 9.2 - Prob. 67ECh. 9.2 - Prob. 68ECh. 9.2 - Prob. 69ECh. 9.3 - Prob. 1YTCh. 9.3 - Prob. 2YTCh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Prob. 5ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Find all points where the functions have any...Ch. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - Prob. 20ECh. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - Prob. 27ECh. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Let f(x,y)=y22x2y+4x3+20x2. The only critical...Ch. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Prob. 35ECh. 9.3 - Prob. 37ECh. 9.3 - Prob. 38ECh. 9.3 - Prob. 39ECh. 9.3 - Prob. 40ECh. 9.3 - Prob. 41ECh. 9.4 - Prob. 1YTCh. 9.4 - Prob. 2YTCh. 9.4 - Prob. 3YTCh. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Evaluate dzusing the given the information....Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Evaluate dzusing the given information....Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Use the total differential to approximate each...Ch. 9.4 - Prob. 16ECh. 9.4 - Blood Vessel Volume A portion of a blood vessel is...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Dialysis A model that estimates the concentration...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Eastern Hemlock Ring shake, which is the...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Prob. 29ECh. 9.4 - Prob. 30ECh. 9.4 - Multivariable Calculus Total Differentials and...Ch. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - Prob. 35ECh. 9.5 - Prob. 1YTCh. 9.5 - Prob. 2YTCh. 9.5 - Prob. 3YTCh. 9.5 - Prob. 4YTCh. 9.5 - Prob. 5YTCh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - EXERCISES Evaluate each integral. 15ye4x+y2dxCh. 9.5 - EXERCISES Evaluate each iterated integral. Many of...Ch. 9.5 - Prob. 12ECh. 9.5 - Prob. 13ECh. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 26ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - EXERCISES Find each double integral over the...Ch. 9.5 - Prob. 31ECh. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 36ECh. 9.5 - Prob. 37ECh. 9.5 - Prob. 38ECh. 9.5 - Prob. 39ECh. 9.5 - Prob. 40ECh. 9.5 - Prob. 41ECh. 9.5 - Prob. 42ECh. 9.5 - Prob. 43ECh. 9.5 - Prob. 44ECh. 9.5 - Prob. 45ECh. 9.5 - Prob. 46ECh. 9.5 - Prob. 47ECh. 9.5 - Prob. 48ECh. 9.5 - Prob. 49ECh. 9.5 - Prob. 50ECh. 9.5 - Prob. 51ECh. 9.5 - Prob. 52ECh. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - Prob. 55ECh. 9.5 - EXERCISES Use the region R with the indicated...Ch. 9.5 - Prob. 57ECh. 9.5 - Prob. 58ECh. 9.5 - Prob. 59ECh. 9.5 - Prob. 60ECh. 9.5 - Prob. 61ECh. 9.5 - Prob. 63ECh. 9.5 - Prob. 64ECh. 9.5 - Prob. 65ECh. 9.5 - Prob. 66ECh. 9.5 - Prob. 67ECh. 9.5 - Prob. 68ECh. 9.5 - Prob. 69ECh. 9.5 - Prob. 70ECh. 9.CR - Determine whether each of the following statements...Ch. 9.CR - Prob. 2CRCh. 9.CR - Prob. 3CRCh. 9.CR - Prob. 4CRCh. 9.CR - Prob. 5CRCh. 9.CR - Prob. 6CRCh. 9.CR - Prob. 7CRCh. 9.CR - Prob. 8CRCh. 9.CR - Prob. 9CRCh. 9.CR - Prob. 10CRCh. 9.CR - Prob. 11CRCh. 9.CR - Prob. 12CRCh. 9.CR - Prob. 13CRCh. 9.CR - Prob. 14CRCh. 9.CR - Prob. 15CRCh. 9.CR - Prob. 16CRCh. 9.CR - Prob. 17CRCh. 9.CR - Prob. 18CRCh. 9.CR - Prob. 19CRCh. 9.CR - Prob. 20CRCh. 9.CR - Prob. 21CRCh. 9.CR - Prob. 22CRCh. 9.CR - Prob. 23CRCh. 9.CR - Prob. 24CRCh. 9.CR - Prob. 25CRCh. 9.CR - Prob. 26CRCh. 9.CR - Prob. 27CRCh. 9.CR - Prob. 28CRCh. 9.CR - Prob. 29CRCh. 9.CR - Prob. 30CRCh. 9.CR - Prob. 31CRCh. 9.CR - Prob. 32CRCh. 9.CR - Prob. 33CRCh. 9.CR - Prob. 34CRCh. 9.CR - Prob. 35CRCh. 9.CR - Prob. 36CRCh. 9.CR - Prob. 37CRCh. 9.CR - Prob. 38CRCh. 9.CR - Prob. 39CRCh. 9.CR - Prob. 40CRCh. 9.CR - Prob. 41CRCh. 9.CR - Prob. 42CRCh. 9.CR - Prob. 43CRCh. 9.CR - Prob. 44CRCh. 9.CR - Prob. 45CRCh. 9.CR - Prob. 46CRCh. 9.CR - Prob. 47CRCh. 9.CR - Prob. 48CRCh. 9.CR - Prob. 49CRCh. 9.CR - Prob. 50CRCh. 9.CR - Prob. 51CRCh. 9.CR - Prob. 52CRCh. 9.CR - Prob. 53CRCh. 9.CR - Prob. 54CRCh. 9.CR - Prob. 55CRCh. 9.CR - Prob. 56CRCh. 9.CR - Prob. 57CRCh. 9.CR - Prob. 58CRCh. 9.CR - Prob. 59CRCh. 9.CR - Prob. 60CRCh. 9.CR - Prob. 61CRCh. 9.CR - Prob. 62CRCh. 9.CR - Prob. 63CRCh. 9.CR - Prob. 64CRCh. 9.CR - Prob. 65CRCh. 9.CR - Prob. 66CRCh. 9.CR - Prob. 67CRCh. 9.CR - Prob. 68CRCh. 9.CR - Prob. 69CRCh. 9.CR - Prob. 70CRCh. 9.CR - Prob. 71CRCh. 9.CR - Prob. 72CRCh. 9.CR - Prob. 73CRCh. 9.CR - Prob. 74CRCh. 9.CR - Prob. 75CRCh. 9.CR - Prob. 76CRCh. 9.CR - Prob. 77CRCh. 9.CR - Prob. 78CRCh. 9.CR - Prob. 79CRCh. 9.CR - Prob. 80CRCh. 9.CR - Prob. 81CRCh. 9.CR - Prob. 82CRCh. 9.CR - Prob. 83CRCh. 9.CR - Prob. 84CRCh. 9.CR - Prob. 85CRCh. 9.CR - Prob. 86CRCh. 9.CR - Prob. 88CRCh. 9.CR - Prob. 89CRCh. 9.CR - Prob. 90CRCh. 9.CR - Prob. 91CRCh. 9.CR - Prob. 92CRCh. 9.CR - Prob. 93CRCh. 9.CR - Prob. 94CRCh. 9.CR - Prob. 95CRCh. 9.CR - Prob. 96CRCh. 9.CR - Prob. 97CRCh. 9.CR - Production Error The height of a sample cone from...Ch. 9.CR - Prob. 99CRCh. 9.EA - Prob. 1EACh. 9.EA - Prob. 2EA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- A driver is traveling along a straight road when a buffalo runs into the street. This driver has a reaction time of 0.75 seconds. When the driver sees the buffalo he is traveling at 44 ft/s, his car can decelerate at 2 ft/s^2 when the brakes are applied. What is the stopping distance between when the driver first saw the buffalo, to when the car stops.arrow_forwardTopic 2 Evaluate S x dx, using u-substitution. Then find the integral using 1-x2 trigonometric substitution. Discuss the results! Topic 3 Explain what an elementary anti-derivative is. Then consider the following ex integrals: fed dx x 1 Sdx In x Joseph Liouville proved that the first integral does not have an elementary anti- derivative Use this fact to prove that the second integral does not have an elementary anti-derivative. (hint: use an appropriate u-substitution!)arrow_forward1. Given the vector field F(x, y, z) = -xi, verify the relation 1 V.F(0,0,0) = lim 0+ volume inside Se ff F• Nds SE where SE is the surface enclosing a cube centred at the origin and having edges of length 2€. Then, determine if the origin is sink or source.arrow_forward
- 4 3 2 -5 4-3 -2 -1 1 2 3 4 5 12 23 -4 The function graphed above is: Increasing on the interval(s) Decreasing on the interval(s)arrow_forwardQuestion 4 The plot below represents the function f(x) 8 7 3 pts O -4-3-2-1 6 5 4 3 2 + 1 2 3 5 -2+ Evaluate f(3) f(3) = Solve f(x) = 3 x= Question 5arrow_forwardQuestion 14 6+ 5 4 3 2 -8-2 2 3 4 5 6 + 2 3 4 -5 -6 The graph above is a transformation of the function f(x) = |x| Write an equation for the function graphed above g(x) =arrow_forward
- Question 8 Use the graph of f to evaluate the following: 6 f(x) 5 4 3 2 1 -1 1 2 3 4 5 -1 t The average rate of change of f from 4 to 5 = Question 9 10 ☑ 4parrow_forwardQuestion 15 ✓ 6 pts 1 Details The function shown below is f(x). We are interested in the transformed function g(x) = 3f(2x) - 1 a) Describe all the transformations g(x) has made to f(x) (shifts, stretches, etc). b) NEATLY sketch the transformed function g(x) and upload your graph as a PDF document below. You may use graph paper if you want. Be sure to label your vertical and horizontal scales so that I can tell how big your function is. 1- 0 2 3 4 -1- Choose File No file chosen Question 16 0 pts 1 Detailsarrow_forwardhelparrow_forward
- Question 2 Let F be a solenoidal vector field, suppose V × F = (-8xy + 12z², −9x² + 4y² + 9z², 6y²), and let (P,Q,R) = V²F(.725, —.283, 1.73). Then the value of sin(2P) + sin(3Q) + sin(4R) is -2.024 1.391 0.186 -0.994 -2.053 -0.647 -0.588 -1.851 1 ptsarrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forwardanswerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY