
Student Solutions Manual For Basic Technical Mathematics And Basic Technical Mathematics With Calculus
11th Edition
ISBN: 9780134434636
Author: Allyn J. Washington, Richard Evans
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.2, Problem 15E
To determine
The x and y components of the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Find the minimum cost of a rectangular box of volume 120 cm³ whose top and bottom cost 6 cents per cm²
and whose sides cost 5 cents per cm². Round your answer to nearest whole number cents.
Cost =
cents.
Early Monday morning, the temperature in the lecture hall has fallen to 40°F, the same as the temperature outside. At 7:00 A.M., the janitor turns on the furnace with the thermostat set at 72°F. The time constant
for the building is = 3 hr and that for the building along with its heating system is
1
K
A.M.? When will the temperature inside the hall reach 71°F?
1
=
1
hr. Assuming that the outside temperature remains constant, what will be the temperature inside the lecture hall at 8:30
2
At 8:30 A.M., the temperature inside the lecture hall will be about
(Round to the nearest tenth as needed.)
1°F.
Find a polynomial with integer coefficients that satisfies the given conditions. T(x) has degree 4, zeros i and 1 + i, and constant term 12.
Chapter 9 Solutions
Student Solutions Manual For Basic Technical Mathematics And Basic Technical Mathematics With Calculus
Ch. 9.1 - For the vectors in Example 2, show that R = B + C...Ch. 9.1 - Prob. 2PECh. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7ECh. 9.1 - Prob. 8E
Ch. 9.1 - Prob. 9ECh. 9.1 - Prob. 10ECh. 9.1 - Prob. 11ECh. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - In Exercises 15–18, draw the given vectors and...Ch. 9.1 - Prob. 17ECh. 9.1 - In Exercises 15–18, draw the given vectors and...Ch. 9.1 - Prob. 19ECh. 9.1 - Prob. 20ECh. 9.1 - Prob. 21ECh. 9.1 - Prob. 22ECh. 9.1 - Prob. 23ECh. 9.1 - In Exercises 19–40, find the indicated vector sums...Ch. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - Prob. 30ECh. 9.1 - Prob. 31ECh. 9.1 - Prob. 32ECh. 9.1 - Prob. 33ECh. 9.1 - Prob. 34ECh. 9.1 - Prob. 35ECh. 9.1 - Prob. 36ECh. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.1 - In Exercises 19–40, find the indicated vector sums...Ch. 9.1 - Prob. 40ECh. 9.1 - Prob. 41ECh. 9.1 - Prob. 42ECh. 9.1 - Prob. 43ECh. 9.1 - Prob. 44ECh. 9.1 - Prob. 45ECh. 9.1 - Prob. 46ECh. 9.1 - In Exercises 41–48, solve the given problems. Use...Ch. 9.1 - Prob. 48ECh. 9.2 - For the vector in Example 1, change the angle to...Ch. 9.2 - Prob. 2PECh. 9.2 - Prob. 3PECh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - In Exercises 5–10, find the horizontal and...Ch. 9.2 - Prob. 7ECh. 9.2 - In Exercises 5–10, find the horizontal and...Ch. 9.2 - Prob. 9ECh. 9.2 - In Exercises 5–10, find the horizontal and...Ch. 9.2 - Prob. 11ECh. 9.2 - In Exercises 11–20, find the x- and y-components...Ch. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - In Exercises 11–20, find the x- and y-components...Ch. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - In Exercises 11–20, find the x- and y-components...Ch. 9.2 - In Exercises 21–34, find the required horizontal...Ch. 9.2 - In Exercises 21–34, find the required horizontal...Ch. 9.2 - Prob. 23ECh. 9.2 - In Exercises 21–34, find the required horizontal...Ch. 9.2 - Prob. 25ECh. 9.2 - Prob. 26ECh. 9.2 - Prob. 27ECh. 9.2 - In Exercises 21–34, find the required horizontal...Ch. 9.2 - Prob. 29ECh. 9.2 - In Exercises 21–34, find the required horizontal...Ch. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Prob. 33ECh. 9.2 - Prob. 34ECh. 9.3 - Prob. 1PECh. 9.3 - Prob. 2PECh. 9.3 - Prob. 3PECh. 9.3 - Prob. 1ECh. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - In Exercises 3–6, vectors A and B are at right...Ch. 9.3 - In Exercises 3–6, vectors A and B are at right...Ch. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - In Exercises 7–14, with the given sets of...Ch. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Prob. 19ECh. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - Prob. 28ECh. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - In order to move an ocean liner into the channel,...Ch. 9.3 - In Exercises 15–32, add the given vectors by...Ch. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Prob. 35ECh. 9.3 - Prob. 36ECh. 9.4 - A ship sails 32.50 mi due east and then turns...Ch. 9.4 - Prob. 2PECh. 9.4 - EXAMPLE 5 Equilibrium—forces on a climber
A 165-lb...Ch. 9.4 - Prob. 1ECh. 9.4 - Prob. 2ECh. 9.4 - Prob. 3ECh. 9.4 - A jet is 115 mi east and 88.3 mi north of Niagara...Ch. 9.4 - Prob. 5ECh. 9.4 - Prob. 6ECh. 9.4 - Prob. 7ECh. 9.4 - Toronto is 650 km at 19.0° north of east from...Ch. 9.4 - Prob. 9ECh. 9.4 - A rocket is launched with a vertical component of...Ch. 9.4 - In testing the behavior of a tire on ice, a force...Ch. 9.4 - To raise a crate, two ropes are attached to its...Ch. 9.4 - A storm front is moving east at 18.0 km/h and...Ch. 9.4 - Prob. 14ECh. 9.4 - Prob. 15ECh. 9.4 - Prob. 16ECh. 9.4 - In an automobile safety test, a shoulder and seat...Ch. 9.4 - Prob. 18ECh. 9.4 - A plane flies at 550 km/h into a head wind of 60...Ch. 9.4 - A ship’s navigator determines that the ship is...Ch. 9.4 - Prob. 21ECh. 9.4 - Prob. 22ECh. 9.4 - Prob. 23ECh. 9.4 - On a mountain trek, a pack mule becomes obstinate...Ch. 9.4 - Prob. 25ECh. 9.4 - Prob. 26ECh. 9.4 - Prob. 27ECh. 9.4 - A mine shaft goes due west 75 m from the opening...Ch. 9.4 - Prob. 29ECh. 9.4 -
A scuba diver’s body is directed downstream at...Ch. 9.4 - Prob. 31ECh. 9.4 - Prob. 32ECh. 9.4 - Prob. 33ECh. 9.4 - Prob. 34ECh. 9.4 - A plane is moving at 75.0 m/s, and a package with...Ch. 9.4 - Prob. 36ECh. 9.4 - Prob. 37ECh. 9.4 - Prob. 38ECh. 9.5 - Prob. 1PECh. 9.5 - Prob. 2PECh. 9.5 - Prob. 3PECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - In Exercises 3–20, solve the triangles with the...Ch. 9.5 - Prob. 14ECh. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - A small island is approximately a triangle in...Ch. 9.5 - A boat followed a triangular route going from dock...Ch. 9.5 - The loading ramp at a delivery service is 12.5 ft...Ch. 9.5 - In an aerial photo of a triangular field, the...Ch. 9.5 - The Pentagon (headquarters of the U.S. Department...Ch. 9.5 - Prob. 26ECh. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - Prob. 29ECh. 9.5 - When an airplane is landing at an 8250-ft runway,...Ch. 9.5 - Find the total length of the path of the laser...Ch. 9.5 - Prob. 32ECh. 9.5 - Prob. 33ECh. 9.5 - Prob. 34ECh. 9.5 - Prob. 35ECh. 9.5 - Prob. 36ECh. 9.5 - Prob. 37ECh. 9.5 - Prob. 38ECh. 9.6 - Prob. 1PECh. 9.6 - Prob. 2PECh. 9.6 - Prob. 1ECh. 9.6 - Prob. 2ECh. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - Prob. 6ECh. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - Prob. 9ECh. 9.6 - Prob. 10ECh. 9.6 - Prob. 11ECh. 9.6 - Prob. 12ECh. 9.6 - Prob. 13ECh. 9.6 - Prob. 14ECh. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - Prob. 16ECh. 9.6 - Prob. 17ECh. 9.6 - In Exercises 3–20, solve the triangles with the...Ch. 9.6 - Prob. 19ECh. 9.6 - Prob. 20ECh. 9.6 - Prob. 21ECh. 9.6 - Prob. 22ECh. 9.6 - Prob. 23ECh. 9.6 - Prob. 24ECh. 9.6 - Prob. 25ECh. 9.6 - Prob. 26ECh. 9.6 - Prob. 27ECh. 9.6 - Prob. 28ECh. 9.6 - Prob. 29ECh. 9.6 - In Exercises 21–40, use the law of cosines to...Ch. 9.6 - Prob. 31ECh. 9.6 - Prob. 32ECh. 9.6 - In Exercises 21–40, use the law of cosines to...Ch. 9.6 - Prob. 34ECh. 9.6 - Prob. 35ECh. 9.6 - Prob. 36ECh. 9.6 - In Exercises 21–40, use the law of cosines to...Ch. 9.6 - Prob. 38ECh. 9.6 - Prob. 39ECh. 9.6 - Prob. 40ECh. 9 - Prob. 1RECh. 9 - Prob. 2RECh. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - In Exercises 15–22, add the given vectors by using...Ch. 9 - Prob. 17RECh. 9 - Prob. 18RECh. 9 - Prob. 19RECh. 9 - Prob. 20RECh. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Prob. 25RECh. 9 - Prob. 26RECh. 9 - Prob. 27RECh. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Prob. 30RECh. 9 - Prob. 31RECh. 9 - Prob. 32RECh. 9 - Prob. 33RECh. 9 - Prob. 34RECh. 9 - Prob. 35RECh. 9 - Prob. 36RECh. 9 - Prob. 37RECh. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Prob. 41RECh. 9 - In Exercises 41–74, solve the given problems.
42....Ch. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Prob. 45RECh. 9 - Prob. 46RECh. 9 - Prob. 47RECh. 9 - Prob. 48RECh. 9 - Prob. 49RECh. 9 - Prob. 50RECh. 9 - Prob. 51RECh. 9 - Prob. 52RECh. 9 - In Exercises 41–74, solve the given...Ch. 9 - Prob. 54RECh. 9 - Prob. 55RECh. 9 - Prob. 56RECh. 9 - Prob. 57RECh. 9 - Prob. 58RECh. 9 - Prob. 59RECh. 9 - Prob. 60RECh. 9 - Prob. 61RECh. 9 - Prob. 62RECh. 9 - Prob. 63RECh. 9 - Prob. 64RECh. 9 - Prob. 65RECh. 9 - Prob. 66RECh. 9 - Prob. 67RECh. 9 - Prob. 68RECh. 9 - Prob. 69RECh. 9 - Prob. 70RECh. 9 - Prob. 71RECh. 9 - Prob. 72RECh. 9 - Prob. 73RECh. 9 - Prob. 74RECh. 9 - Prob. 75RECh. 9 - Prob. 1PTCh. 9 - Prob. 2PTCh. 9 - Prob. 3PTCh. 9 - Prob. 4PTCh. 9 - Prob. 5PTCh. 9 - Prob. 6PTCh. 9 - Prob. 7PTCh. 9 - Prob. 8PTCh. 9 - Prob. 9PTCh. 9 - Prob. 10PTCh. 9 - Prob. 11PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Find the absolute extrema of the function f(x, y) = x² + y² - 3x-3y+3 on the domain defined by x² + y² <9. Round answers to 3 decimals or more. Absolute Maximum: Absolute Minimum:arrow_forwardFind the maximum and minimum values of the function f(x, y) = e² subject to ï³ + y³ = 128 Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. Maximum value:arrow_forwardA chemical manufacturing plant can produce x units of chemical Z given p units of chemical P and 7 units of chemical R, where: z = 140p0.6,0.4 Chemical P costs $300 a unit and chemical R costs $1,500 a unit. The company wants to produce as many units of chemical Z as possible with a total budget of $187,500. A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z subject to the budgetary constraint? Units of chemical P, p = Units of chemical R, r = B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production, z= unitsarrow_forward
- A firm manufactures a commodity at two different factories, Factory X and Factory Y. The total cost (in dollars) of manufacturing depends on the quantities, and y produced at each factory, respectively, and is expressed by the joint cost function: C(x, y) = x² + xy +4y²+400 A) If the company's objective is to produce 1,900 units per month while minimizing the total monthly cost of production, how many units should be produced at each factory? (Round your answer to whole units, i.e. no decimal places.) To minimize costs, the company should produce: units at Factory X and units at Factory Y B) For this combination of units, their minimal costs will be enter any commas in your answer.) Question Help: Video dollars. (Do notarrow_forwarduse Lagrange multipliers to solvearrow_forwardSuppose a Cobb-Douglas Production function is given by the following: P(L,K)=80L0.75 K-0.25 where L is units of labor, K is units of capital, and P(L, K) is total units that can be produced with this labor/capital combination. Suppose each unit of labor costs $400 and each unit of capital costs $1,600. Further suppose a total of $384,000 is available to be invested in labor and capital (combined). A) How many units of labor and capital should be "purchased" to maximize production subject to your budgetary constraint? Units of labor, L = Units of capital, K = B) What is the maximum number of units of production under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production = unitsarrow_forward
- Suppose a Cobb-Douglas Production function is given by the function: P(L, K) = 7L0.0 K0.4 Furthemore, the cost function for a facility is given by the function: C(L, K) = 100L +400K Suppose the monthly production goal of this facility is to produce 15,000 items. In this problem, we will assume L represents units of labor invested and K represents units of capital invested, and that you can invest in tenths of units for each of these. What allocation of labor and capital will minimize total production Costs? Units of Labor L = Units of Capital K = (Show your answer is exactly 1 decimal place) (Show your answer is exactly 1 decimal place) Also, what is the minimal cost to produce 15,000 units? (Use your rounded values for L and K from above to answer this question.) The minimal cost to produce 15,000 units is $ Hint: 1. Your constraint equation involves the Cobb Douglas Production function, not the Cost function. 2. When finding a relationship between L and K in your system of equations,…arrow_forward1. Give a subset that satisfies all the following properties simultaneously: Subspace Convex set Affine set Balanced set Symmetric set Hyperspace Hyperplane 2. Give a subset that satisfies some of the conditions mentioned in (1) but not all, with examples. 3. Provide a mathematical example (not just an explanation) of the union of two balanced sets that is not balanced. 4. What is the precise mathematical condition for the union of two hyperspaces to also be a hyperspace? Provide a proof. edited 9:11arrow_forwardFind the absolute maximum and minimum of f(x, y) = x + y within the domain x² + y² ≤ 4. Please show your answers to at least 4 decimal places. Enter DNE if the value does not exist. 1. Absolute minimum of f(x, y) isarrow_forward
- Suppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where I and y are the demand functions and 0 < x,y. Then as x = y = the factory can attain the maximum profit,arrow_forward0|0|0|0 - Consider the time series X₁ and Y₁ = (I – B)² (I – B³)Xt. What transformations were performed on Xt to obtain Yt? seasonal difference of order 2 simple difference of order 5 seasonal difference of order 1 seasonal difference of order 5 simple difference of order 2arrow_forwardEvaluate the following integrals, showing all your workingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Write the Complex Number in Trigonometric (Polar) Form; Author: The Math Sorcerer;https://www.youtube.com/watch?v=9kZOHHRjfIQ;License: Standard YouTube License, CC-BY