Nonlinear Dynamics and Chaos
Nonlinear Dynamics and Chaos
2nd Edition
ISBN: 9780429972195
Author: Steven H. Strogatz
Publisher: Taylor & Francis
Question
Book Icon
Chapter 9.1, Problem 4E
Interpretation Introduction

Interpretation:

To analyse the Laser model according to Maxwell- Bloch equations.

    (a) To show that the non-lasing state loses stability above a threshold value of λ, which is to be determined.

    (b) To find a change of variables that transform the system into the Lorenz system.

Concept Introduction:

  • ➢ The fixed point of a differential equation is the point where, f(x*) = 0 ; while substitution f(x*) = x˙ is used and x&*#x00A0;is a fixed point.

  • ➢ The Lorenz system is the system of ordinary differential equations which have a chaotic solution for the particular parameter values and its initial conditions.

Blurred answer
Students have asked these similar questions
Please solve number 2.
Construct a know-show table of the proposition: For each integer n, n is even if and only if 4 divides n^2
In Problems 1 and 2 find the eigenfunctions and the equation that defines the eigenvalues for the given boundary-value problem. Use a CAS to approximate the first four eigenvalues A1, A2, A3, and A4. Give the eigenfunctions corresponding to these approximations. 1. y" + Ay = 0, y'(0) = 0, y(1) + y'(1) = 0
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning