Concept explainers
Repeat Problem 19 using the improved Euler’s method, which has global truncation error O(h2). See Problem 5. You might need to keep more than four decimal places to see the effect of reducing the order of error.
19. Repeat Problem 17 for the initial-value problem y′ = e–y, y(0) = 0. The analytic solution is y(x) = ln(x + 1). Approximate y(0.5). See Problem 5 in Exercises 2.6.
17. Consider the initial-value problem y′ = 2x – 3y + 1, y(1) = 5. The analytic solution is
- (a) Find a formula involving c and h for the local truncation error in the nth step if Euler’s method is used.
- (b) Find a bound for the local truncation error in each step if h = 0.1 is used to approximate y(1.5).
- (c) Approximate y(1.5) using h = 0.1 and h = 0.05 with Euler’s method. See Problem 1 in Exercises 2.6.
- (d) Calculate the errors in part (c) and verify that the global truncation error of Euler’s method is O(h).

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
FIRST COURSE IN DIFF.EQ.-WEBASSIGN
- (1) Let F be a field, show that the vector space F,NEZ* be a finite dimension. (2) Let P2(x) be the vector space of polynomial of degree equal or less than two and M={a+bx+cx²/a,b,cЄ R,a+b=c),show that whether Mis hyperspace or not. (3) Let A and B be a subset of a vector space such that ACB, show that whether: (a) if A is convex then B is convex or not. (b) if B is convex then A is convex or not. (4) Let R be a field of real numbers and X=R, X is a vector space over R show that by definition the norms/II.II, and II.112 on X are equivalent where Ilxll₁ = max(lx,l, i=1,2,...,n) and llxll₂=(x²). oper (5) Let Ⓡ be a field of real numbers, Ⓡis a normed space under usual operations and norm, let E=(2,5,8), find int(E), b(E) and D(E). (6) Write the definition of bounded linear function between two normed spaces and write with prove the relation between continuous and bounded linear function between two normed spaces.arrow_forwardind → 6 Q₁/(a) Let R be a field of real numbers and X-P(x)=(a+bx+cx²+dx/ a,b,c,dER},X is a vector space over R, show that is finite dimension. (b) Let be a bijective linear function from a finite dimension vector ✓ into a space Yand Sbe a basis for X, show that whether f(S) basis for or not. (c) Let be a vector space over a field F and A,B)affine subsets of X,show that whether aAn BB, aAU BB be affine subsets of X or not, a,ẞ EF. (12 Jal (answer only two) (6) Let M be a non-empty subset of a vector space X and tEX, show that M is a hyperspace of X iff t+M is a hyperplane of X and tЄt+M. (b) State Jahn-Banach theorem and write with prove an application of Hahn-arrow_forward(b) Let A and B be two subset of a linear space X such that ACB, show that whether if A is affine set then B affine or need not and if B affine set then A affine set or need not. Qz/antonly be a-Show that every hyperspace of a vecor space X is hyperplane but the convers need not to be true. b- Let M be a finite dimension subspace of a Banach space X show that M is closed set. c-Show that every two norms on finite dimension vector space are equivant (1) Q/answer only two a-Write the definition of bounded set in: a normed space and write with prove an equivalent statement to a definition. b- Let f be a function from a normed space X into a normed space Y, show that f continuous iff f is bounded. c-Show that every finite dimension normed space is a Banach. Q/a- Let A and B two open sets in a normed space X, show that by definition AnB and AUB are open sets. (1 nood truearrow_forward
- can you solve this question and explain the steps used along the wayarrow_forwardcan you solve this question using partial fraction decomposition and explain the steps used along the wayarrow_forwardWhat is Poisson probability? What are 3 characteristics of Poisson probability? What are 2 business applications of Poisson probability? Calculate the Poisson probability for the following data. x = 3, lambda = 2 x = 2, lambda = 1.5 x = 12, lambda = 10 For the problem statements starting from question 6 onward, exercise caution when entering data into Microsoft Excel. It's essential to carefully evaluate which value represents x and which represents λ. A call center receives an average of 3 calls per minute. What is the probability that exactly 5 calls are received in a given minute? On average, 4 patients arrive at an emergency room every hour. What is the probability that exactly 7 patients will arrive in the next hour? A production line produces an average of 2 defective items per hour. What is the probability that exactly 3 defective items will be produced in the next hour? An intersection experiences an average of 1.5 accidents per month. What is the probability that…arrow_forward
- (Nondiagonal Jordan form) Consider a linear system with a Jordan form that is non-diagonal. (a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue 入 = O with a nontrivial Jordan block, then there exists an initial condition with a solution that grows in time. (b) Extend this argument to the case of complex eigenvalues with Reλ = 0 by using the block Jordan form Ji = 0 W 0 0 3000 1 0 0 1 0 ω 31 0arrow_forwardIntegral How 80*1037 IW 1012 S е ऍ dw answer=0 How 70+10 A 80*1037 Ln (Iwl+1) du answer=123.6K 70*1637arrow_forwardcan you solve this question and explain the steps used along the wayarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage