Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
5th Edition
ISBN: 9780980232776
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
bartleby

Videos

Question
Book Icon
Chapter 9.1, Problem 1PS
To determine

(a)

The sum and product of the given complex numbers.

Expert Solution
Check Mark

Answer to Problem 1PS

z1+z2=4 and z1z2=5

Explanation of Solution

Given:

   z1=2+i,z2=2i

Concept Used:

If z1=x1+iy1,z2=x2+iy2 are any two complex numbers, then

   z1+z2=(x1+iy1)+(x2+iy2)z1+z2=(x1+x2)+(iy1+iy2)z1+z2=(x1+x2)+i(y1+y2)

   z1z2=(x1+iy1)(x2+iy2)z1z2=x1(x2+iy2)+iy1(x2+iy2)z1z2=x1x2+ix1y2+ix2y1+i2y1y2z1z2=x1x2+ix1y2+ix2y1y1y2 [i2=1]z1z2=(x1x2y1y2)+i(x1y2+x2y1)

Calculation:

Here, we have

   z1=2+i,z2=2i

   z1+z2=(2+i)+(2i)z1+z2=(2+2)+i(11)z1+z2=4+i(0)z1+z2=4

   z1z2=(2+i)(2i)z1z2={2×21(1)}+i{2(1)+2(1)}z1z2={4+1}+i{2+2}z1z2=5+i{0}z1z2=5

To determine

(b)

The sum and product of the given complex numbers.

Expert Solution
Check Mark

Answer to Problem 1PS

z1+z2=2+2i and z1z2=2i

Explanation of Solution

Given:

   z1=1+i,z2=1+i

Concept Used:

If z1=x1+iy1,z2=x2+iy2 are any two complex numbers, then

   z1+z2=(x1+iy1)+(x2+iy2)z1+z2=(x1+x2)+(iy1+iy2)z1+z2=(x1+x2)+i(y1+y2)

   z1z2=(x1+iy1)(x2+iy2)z1z2=x1(x2+iy2)+iy1(x2+iy2)z1z2=x1x2+ix1y2+ix2y1+i2y1y2z1z2=x1x2+ix1y2+ix2y1y1y2 [i2=1]z1z2=(x1x2y1y2)+i(x1y2+x2y1)

Calculation:

Here, we have

   z1=1+i,z2=1+i

   z1+z2=(1+i)+(1+i)z1+z2=(11)+i(1+1)z1+z2=2+i(2)z1+z2=2+2i

   z1z2=(1+i)(1+i)z1z2={(1)×(1)1×1}+i{(1)×1+(1)×1}z1z2={11}+i{11}z1z2=0+i{2}z1z2=2i

To determine

(c)

The sum and product of the given complex numbers.

Expert Solution
Check Mark

Answer to Problem 1PS

z1+z2=2cosθ and z1z2=1

Explanation of Solution

Given:

   z1=cosθ+isinθ,z2=cosθisinθ

Concept Used:

If z1=x1+iy1,z2=x2+iy2 are any two complex numbers, then

   z1+z2=(x1+iy1)+(x2+iy2)z1+z2=(x1+x2)+(iy1+iy2)z1+z2=(x1+x2)+i(y1+y2)

   z1z2=(x1+iy1)(x2+iy2)z1z2=x1(x2+iy2)+iy1(x2+iy2)z1z2=x1x2+ix1y2+ix2y1+i2y1y2z1z2=x1x2+ix1y2+ix2y1y1y2 [i2=1]z1z2=(x1x2y1y2)+i(x1y2+x2y1)

Calculation:

Here, we have

   z1=cosθ+isinθ,z2=cosθisinθ

   z1+z2=(cosθ+isinθ)+(cosθisinθ)z1+z2=(cosθ+cosθ)+i(sinθsinθ)z1+z2=2cosθ+i(0)z1+z2=2cosθ

   z1z2=(cosθ+isinθ)(cosθisinθ)z1z2=(cosθ)2(isinθ)2 [(a+b)(ab)=a2b2]z1z2=cos2θi2sin2θz1z2=cos2θ(1)sin2θ [i2=1]z1z2=cos2θ+sin2θ [cos2θ+sin2θ=1]z1z2=1

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:PEARSON
Text book image
Contemporary Abstract Algebra
Algebra
ISBN:9781305657960
Author:Joseph Gallian
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:9780135163078
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:9780980232776
Author:Gilbert Strang
Publisher:Wellesley-Cambridge Press
Text book image
College Algebra (Collegiate Math)
Algebra
ISBN:9780077836344
Author:Julie Miller, Donna Gerken
Publisher:McGraw-Hill Education
Write the Complex Number in Trigonometric (Polar) Form; Author: The Math Sorcerer;https://www.youtube.com/watch?v=9kZOHHRjfIQ;License: Standard YouTube License, CC-BY