CHEMICAL PRINCIPLES (LL) W/ACCESS
CHEMICAL PRINCIPLES (LL) W/ACCESS
7th Edition
ISBN: 9781319421175
Author: ATKINS
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9D.13E
Interpretation Introduction

Interpretation:

An explanation has to be given why when paramagnetic [Fe(CN)6]3-.ion is reduced to [Fe(CN)6]4- it becomes diamagnetic but when paramagnetic [Fe(Cl)4]- ion is reduced to [Fe(Cl)4]2- it remains paramagnetic.

Expert Solution & Answer
Check Mark

Answer to Problem 9D.13E

If paramagnetic [Fe(CN)6]3-.ion is reduced to [Fe(CN)6]4- it becomes diamagnetic but when paramagnetic [Fe(Cl)4]- ion is reduced to [Fe(Cl)4]2- it remains paramagnetic because [Fe(CN)6]3- & [Fe(CN)6]4- are octahedral complexes while [Fe(Cl)4]- & [Fe(Cl)4]2- are tetrahedral complexes.

Explanation of Solution

The oxidation number of iron in [Fe(CN)6]3- complex is +3 and the electronic configuration of Fe3+ is [Ar]3d5.

The orbital energy level diagram for d5 configuration is,

CHEMICAL PRINCIPLES (LL) W/ACCESS, Chapter 9, Problem 9D.13E , additional homework tip  1

Since, cyanide acts as a strong ligand in [Fe(CN)6]3- complex all the d electrons are paired up in the lower energy levels and there is one unpaired electron.  Thus, it is paramagnetic.

The oxidation number of iron in [Fe(CN)6]4- complex is +2 and the electronic configuration of Fe2+ is [Ar]3d6.

The orbital energy level diagram for d6 configuration is,

CHEMICAL PRINCIPLES (LL) W/ACCESS, Chapter 9, Problem 9D.13E , additional homework tip  2

Since, cyanide acts as a strong ligand in [Fe(CN)6]4- complex all the d electrons are paired up in the lower energy levels and there is no unpaired electron.  Thus, it is diamagnetic.

The oxidation number of iron in [Fe(Cl)4]- complex is +3 and the electronic configuration of Fe3+ is [Ar]3d5.

[Fe(Cl)4]- is a tetrahedral complex.  In a tetrahedral complex there are four ligands attached to the central metal.  The d-orbitals split into two different energy levels.  The two three consist of dxy,dxz,dyz and the bottom two consist of dx2-y2&dz2 the reason for this is due to the poor orbital overlap between the metal and the ligand orbitals

The orbital energy level diagram for d5 configuration is,

CHEMICAL PRINCIPLES (LL) W/ACCESS, Chapter 9, Problem 9D.13E , additional homework tip  3

Since, chloride ion is a weak ligand the electrons are filled according to the Hund’s rule in the d-orbitals and the number of unpaired electron in iron complex is one.  Thus, it is paramagnetic complex.

The oxidation number of iron in [Fe(Cl)4]2- complex is +2 and the electronic configuration of Fe2+ is [Ar]3d6.

The orbital energy level diagram for d6 configuration is,

CHEMICAL PRINCIPLES (LL) W/ACCESS, Chapter 9, Problem 9D.13E , additional homework tip  4

Since, chloride ion is a weak ligand the electrons are filled according to the Hund’s rule in the d-orbitals and the number of unpaired electron in iron complex is two.  Thus, it is paramagnetic complex.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a. What is the eluent used in the column chromatography here (a “silica plug filtration” is essentially a very short column)? b. The spectroscopy of compound 5b is described in the second half of this excerpt, including 1H-NMR and 13C-NMR (which you will learn about in CHEM 2412L), MS (which you will learn about later in CHEM 2411L) and IR. One of the IR signals is at 3530 cm-1. What functional group does this indicate might be present in compound 5b?
Steps and explanations. Also provide, if possible, ways to adress this kind of problems in general.
a. The first three lines of this procedure describe the reaction used to make compound 5b. In the fourth line, hexane and sodium bicarbonate are added. What organic lab technique is being used here?  b. What is the purpose of the Na2SO4?  c. What equipment would you use to “concentrate [a solution] under reduced pressure”?

Chapter 9 Solutions

CHEMICAL PRINCIPLES (LL) W/ACCESS

Ch. 9 - Prob. 9A.9ECh. 9 - Prob. 9A.10ECh. 9 - Prob. 9A.11ECh. 9 - Prob. 9A.12ECh. 9 - Prob. 9A.13ECh. 9 - Prob. 9A.14ECh. 9 - Prob. 9B.1ASTCh. 9 - Prob. 9B.1BSTCh. 9 - Prob. 9B.2ASTCh. 9 - Prob. 9B.2BSTCh. 9 - Prob. 9B.1ECh. 9 - Prob. 9B.2ECh. 9 - Prob. 9B.3ECh. 9 - Prob. 9B.4ECh. 9 - Prob. 9B.5ECh. 9 - Prob. 9B.6ECh. 9 - Prob. 9B.7ECh. 9 - Prob. 9B.8ECh. 9 - Prob. 9B.9ECh. 9 - Prob. 9B.10ECh. 9 - Prob. 9B.11ECh. 9 - Prob. 9B.12ECh. 9 - Prob. 9B.13ECh. 9 - Prob. 9B.14ECh. 9 - Prob. 9B.15ECh. 9 - Prob. 9B.16ECh. 9 - Prob. 9C.1ASTCh. 9 - Prob. 9C.1BSTCh. 9 - Prob. 9C.2ASTCh. 9 - Prob. 9C.2BSTCh. 9 - Prob. 9C.3ASTCh. 9 - Prob. 9C.3BSTCh. 9 - Prob. 9C.4ASTCh. 9 - Prob. 9C.4BSTCh. 9 - Prob. 9C.1ECh. 9 - Prob. 9C.2ECh. 9 - Prob. 9C.3ECh. 9 - Prob. 9C.4ECh. 9 - Prob. 9C.5ECh. 9 - Prob. 9C.6ECh. 9 - Prob. 9C.7ECh. 9 - Prob. 9C.8ECh. 9 - Prob. 9C.9ECh. 9 - Prob. 9C.10ECh. 9 - Prob. 9C.11ECh. 9 - Prob. 9C.12ECh. 9 - Prob. 9C.13ECh. 9 - Prob. 9C.14ECh. 9 - Prob. 9C.15ECh. 9 - Prob. 9C.16ECh. 9 - Prob. 9C.17ECh. 9 - Prob. 9C.18ECh. 9 - Prob. 9C.19ECh. 9 - Prob. 9C.20ECh. 9 - Prob. 9D.1ASTCh. 9 - Prob. 9D.1BSTCh. 9 - Prob. 9D.2ASTCh. 9 - Prob. 9D.2BSTCh. 9 - Prob. 9D.3ASTCh. 9 - Prob. 9D.3BSTCh. 9 - Prob. 9D.4ASTCh. 9 - Prob. 9D.4BSTCh. 9 - Prob. 9D.1ECh. 9 - Prob. 9D.2ECh. 9 - Prob. 9D.3ECh. 9 - Prob. 9D.4ECh. 9 - Prob. 9D.5ECh. 9 - Prob. 9D.6ECh. 9 - Prob. 9D.7ECh. 9 - Prob. 9D.8ECh. 9 - Prob. 9D.9ECh. 9 - Prob. 9D.10ECh. 9 - Prob. 9D.11ECh. 9 - Prob. 9D.12ECh. 9 - Prob. 9D.13ECh. 9 - Prob. 9D.14ECh. 9 - Prob. 9D.15ECh. 9 - Prob. 9D.16ECh. 9 - Prob. 9D.17ECh. 9 - Prob. 9D.18ECh. 9 - Prob. 9D.19ECh. 9 - Prob. 9D.20ECh. 9 - Prob. 9D.21ECh. 9 - Prob. 9D.22ECh. 9 - Prob. 9D.23ECh. 9 - Prob. 9D.24ECh. 9 - Prob. 9D.25ECh. 9 - Prob. 9D.26ECh. 9 - Prob. 9D.27ECh. 9 - Prob. 9D.28ECh. 9 - Prob. 9D.29ECh. 9 - Prob. 9D.30ECh. 9 - Prob. 9D.31ECh. 9 - Prob. 9D.32ECh. 9 - Prob. 9D.33ECh. 9 - Prob. 9D.34ECh. 9 - Prob. 9.1ECh. 9 - Prob. 9.2ECh. 9 - Prob. 9.3ECh. 9 - Prob. 9.4ECh. 9 - Prob. 9.5ECh. 9 - Prob. 9.6ECh. 9 - Prob. 9.7ECh. 9 - Prob. 9.8ECh. 9 - Prob. 9.9ECh. 9 - Prob. 9.10ECh. 9 - Prob. 9.11ECh. 9 - Prob. 9.12ECh. 9 - Prob. 9.13ECh. 9 - Prob. 9.14ECh. 9 - Prob. 9.15ECh. 9 - Prob. 9.16ECh. 9 - Prob. 9.17ECh. 9 - Prob. 9.18ECh. 9 - Prob. 9.19ECh. 9 - Prob. 9.20ECh. 9 - Prob. 9.21ECh. 9 - Prob. 9.23ECh. 9 - Prob. 9.25E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning