On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m , hanging just above the top of the glider on a cord of length L . The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x 1 ; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x 2 . (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m , hanging just above the top of the glider on a cord of length L . The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x 1 ; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x 2 . (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
Solution Summary: The author calculates the horizontal velocity of the centre of mass of glider and sphere system.
On a horizontal air track, a glider of mass m carries a Γ-shaped post. The post supports a small dense sphere, also of mass m, hanging just above the top of the glider on a cord of length L. The glider and sphere are initially at rest with the cord vertical. A constant horizontal force of magnitude F is applied to the glider, moving it through displacement x1; then the force is removed. During the time interval when the force is applied, the sphere moves through a displacement with horizontal component x2. (a) Find the horizontal component of the velocity of the center of mass of the glider–sphere system when the force is removed. (b) After the force is removed, the glider continues to move on the track and the sphere swings back and forth, both without friction. Find an expression for the largest angle the cord makes with the vertical.
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field
of strength B. The field is pointing directly up the page in the plane of the page. The loop is
oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the
normal vector for the loop is always in the plane of the page!). In the illustrations below the
magnetic field is shown in red and the current through the current loop is shown in blue. The
loop starts out in orientation (i) and rotates clockwise, through
orientations (ii) through (viii)
before returning to (i).
(i)
Ø I N - - I N -
(iii)
(iv)
(v)
(vii)
(viii)
a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector
μ of the current loop and indicate whether the torque on the dipole due to the magnetic field
is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the
loop experience the maximum magnitude of torque?
[Hint: Use the…
Please help with calculating the impusle, thanks!
Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse:
1.Measure the weight of the balls and determine their mass.
Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg
The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.