EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100546310
Author: Jewett
Publisher: CENGAGE L
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 9.91AP

A 2.00-g particle moving at 8.00 m/s makes a perfectly elastic head-on collision with a resting 1.00-g object. (a) Find the speed of each particle after the collision. (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10.0 g. (c) Find the final kinetic energy of the incident 2.00-g particle in the situations described in parts (a) and (b). In which case does the incident particle lose more kinetic energy?

(a)

Expert Solution
Check Mark
To determine

The velocity of each particle after collision.

Answer to Problem 9.91AP

The velocity of incident particle after collision is 2.67m/s and velocity of target particle after collision is 10.7m/s .

Explanation of Solution

Given info: The mass of incident particle is 2.00g , the initial velocity of the particle 8.00m/s and mass of target particle is 1.00g .

Write the condition for velocity of incident particle after collision.

v1f=(m1m2m1+m2)v1i+(2m2m1+m2)v2i

Here,

m1 is the mass of the incident particle.

m2 is the mass of the target particle.

v1f is the final velocity of the incident particle.

v1i is the initial velocity of incident particle.

v2f is the final velocity of target particle.

v2i is the initial velocity of target particle.

The initial velocity of the target particle is 0 .

Substitute 0 for v2i , 2.00g for m1 , 1.00g for m2 and 8.00m/s for v1i in above equation.

v1f=(2.00g1.00g2.00g+1.00g)(8.00m/s)+(2(1.00g)2.00g+1.00g)(0)=2.666m/s2.67m/s

Thus, the value of v1f is 2.67m/s .

Write the condition for velocity of target particle after collision.

v2f=(2m1m1+m2)v1i

Substitute 2.00g for m1 , 1.00g for m2 and 8.00m/s for v1i in above equation.

v2f=(2×2.00g(2.00g)+(1.00g))(8.00m/s)=10.666m/s10.7m/s

Thus, the value of v2f is 10.7m/s .

Conclusion:

Therefore, the velocity of incident particle after collision is 2.67m/s and velocity of target particle after collision is 10.7m/s .

(b)

Expert Solution
Check Mark
To determine

The velocity of each particle after collision.

Answer to Problem 9.91AP

The velocity of incident particle after collision is 5.33m/s and velocity of target particle after collision is 2.7m/s .

Explanation of Solution

Given info: The mass of incident particle is 2.00g , the initial velocity of the particle 8.00m/s and mass of target particle is 10.00g .

Write the condition for velocity of incident particle after collision.

v1f=(m1m2m1+m2)v1i+(2m2m1+m2)v2i

Here,

m1 is the mass of the incident particle.

m2 is the mass of the target particle.

v1f is the final velocity of the incident particle.

v1i is the initial velocity of incident particle.

v2f is the final velocity of target particle.

v2i is the initial velocity of target particle.

The initial velocity of the target particle is 0 .

Substitute 0 for v2i , 2.00g for m1 , 10.00g for m2 and 8.00m/s for v1i in above equation.

v1f=(2.00g10.00g2.00g+10.00g)(8.00m/s)+(2(1.00g)2.00g+1.00g)(0)=5.33m/s

Thus, the value of v1f is 5.33m/s .

Write the condition for velocity of target particle after collision.

v2f=(2m1m1+m2)v1i

Substitute 2.00g for m1 , 10.00g for m2 and 8.00m/s for v1i in above equation.

v2f=(2×2.00g(2.00g)+(10.00g))(8.00m/s)=2.666m/s2.7m/s

Thus, the value of v2f is 2.7m/s .

Conclusion:

Therefore, the velocity of incident particle after collision is 5.33m/s and velocity of target particle after collision is 2.7m/s .

(c)

Expert Solution
Check Mark
To determine

The kinetic energy of the incident particle in the situation described in part (a) and (b) and the case in which more kinetic energy is lost.

Answer to Problem 9.91AP

The kinetic energy of the incident particle in the situation described in part (a) is 7.11×103J and in part (b) is 2.84×102J and the incident particle loses more energy in case (a).

Explanation of Solution

Given info: The mass of incident particle is 2.00g , the initial velocity of the particle 8.00m/s and mass of target particle is 10.00g .

Case (a);

From part (a), the velocity of incident particle after collision is 2.67m/s .

Write the expression for final kinetic energy of incident particle for case (a).

KE1f=12m1v1f2

Here,

KE1f is the final kinetic energy of incident particle for case (a).

Substitute  2.00g for m1 and 2.67m/s for v1f in above equation.

KE1f=12×2.00g(103kg1g)×(2.67m/s)27.11×103J

Thus, the value of KE1f is 7.11×103J .

Case (b);

From part (b), the velocity of incident particle after collision is 5.33m/s .

Write the expression for final kinetic energy of incident particle case (b).

KE1f=12m1v1f2

Here,

KE1f is the final kinetic energy of incident particle for case (a).

Substitute  2.00g for m1 and 5.33m/s for v1f in above equation.

KE1f=12×2.00g(103kg1g)×(5.33m/s)2=2.84×102J

Thus, the value of KE1f is 2.84×102J .

Since, the incident kinetic energy is almost same in both cases.

The incident particle loses more kinetic energy in case (a) where the mass of the incident particle is 1.00g .

Conclusion:

Therefore, the kinetic energy of the incident particle in the situation described in part (a) is 7.11×103J and in part (b) is 2.84×102J and the incident particle loses more energy in case (a).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Example Two charges, one with +10 μC of charge, and another with - 7.0 μC of charge are placed in line with each other and held at a fixed distance of 0.45 m. Where can you put a 3rd charge of +5 μC, so that the net force on the 3rd charge is zero?
* Coulomb's Law Example Three charges are positioned as seen below. Charge 1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is - 6.0MC. What is the magnitude and the direction of the force on charge 2 due to charges 1 and 3? 93 kq92 F == 2 r13 = 0.090m 91 r12 = 0.12m 92 Coulomb's Constant: k = 8.99x10+9 Nm²/C² ✓
Make sure to draw a Free Body Diagram as well
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Elastic and Inelastic Collisions; Author: Professor Dave Explains;https://www.youtube.com/watch?v=M2xnGcaaAi4;License: Standard YouTube License, CC-BY