FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
It is proposed to design and develop a Rankine cycle Steam Power Plant in which steam at 80 barand 500 oCis supplied to the turbine which exhausts at a pressure of 0.11 bar into a condenser. Condensate from the condenser is returned to Steam Generator (Boiler) by a Feedwater Pump. The processes in the turbine and pump can be assumed to be reversible adiabatic. In addition, pressure and temperature drops can be neglected throughout the cycle. Sketch the T-s diagram for this cycle and calculate the following performance parameters:i) Cycle Thermal Efficiency ii) Work Ratioiii) Specific Steam Consumptioniv) Condenser Heat Loadv) Mass flow rate of steam to generate a net power output of 40 Megawatts (MW).vi) Mass flow rate of cooling water required for the condenser if the cooling water inlettemperature is 26 oC and its outlet temperature is limited to 40 oC. The specific heat capacityof the cooling water is 4.18 kJ/kg K.viii) The total amount of sensible heat in kW supplied to the…
Please state assumptions and tables.
Find the following:
a. Enthalpy of the steam in kJ/kg entering the condenser
b. Enthalpy in kJ/kg of the condensate
c. Enthalpy in kJ/kg of the feed water
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- We need a steam turbine is to generate 10 MW of power. The feed steam is 200 bar at 500 C. The exhaust is a saturated mixture at 1 bar at 110 C. Calculate the flow rate of steam required.arrow_forwardHint, find enthalpy, entropy at each statearrow_forwardExample 3.13. A regenerative air cooling system is used for an air plane to take 20 tonnes of refrigeration load. The ambient air at pressure 0.8 bar and temperature 10°C is rammed isentropically til the pressure rises to 1.2 bar. The air bled off the main compressor at 4.5 bar is cooled by the ram air in the heat exchanger whose effectiveness is 60%. The air from the heat exchanger is further cooled to 60°C in the regenerative heat exchanger with a portion of the air bled after expansion in the cooling turbine. The cabin is to be maintained at a temperature of 25°C and a pressure of 1 bar. If the isentropic efficiencies of the compressor and turbine are 90% and 80% respectively, find :arrow_forward
- show complete and step by step solution with ts diagram illustration. REGENERATIVE CYCLE AN ENGINEarrow_forward(a) Based on the analysis of steam power plant having condenser, why thermal efficiency of power plant is high in cold region and less in warm region. Explain with the help of T-s diagram (b) Outline why value of TTD is negative in scenario where we have high pressure heater. Explain with the help of T-L diagram (c) In cogeneration having back pressure turbine process heater replaces condenser, outline the difference between process heater and condenserarrow_forwardIn a Steam Power Plant steam enters the turbine at 6 bar and 400 C and is expanded isentropic ally to the condenser pressure of 0.1 bar. Find the condition of the exhaust steam and determine the cycle efficiency.arrow_forward
- The condensing pressure for a Rankine Engine is 1.6 bar. 200°C and the steam at the beginning of expansion is at 3.75 Mpa, 400°C. Calculate the efficiency of cycle and engine using mollier chart. Can you show me the detailed step by step solution?arrow_forwardThe evaporator (a heat exchanger) in an A/C unit has R-410A entering at -20 °C and a quality of 30% and leaves at the same temperature and a quality of 100%. The COP of the air conditioner is known to be 1.3 and the mass flow rate is given as 0.013 kg/s. Find the power input to the cycle. (Note that, here, the evaporator is the part of the A/C unit that accepts [i.e., withdraws] heat from the room maintained at a cold temperature)arrow_forwardPlease Answer all my Question .. Please help me , I don't want plagiarism.arrow_forward
- A steam boller plant consists of an economiser, evaporator and a superheate r and steam Is generated at a rate of 9600 kg/hr at a pressure of 1,8 MPa and 260°C. The feed water enters the eco- nomiser at 36,2°C and the boiler at 86 C. The steam leaves the evaporator 0,89 dry. Ihe plant uses 13,5 kg coal/minute vith a calorific value of 36 MJ/kg. Calculata the heat transfer In the economiser, evaporator and the suporhe ater per kgl. Also calcu- late the plant elficiency and the equivalent evaporation from and at 100°C.arrow_forward1.Give the TS and PV diagrams of Regenerative Rankine Cyclearrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How Shell and Tube Heat Exchangers Work (Engineering); Author: saVRee;https://www.youtube.com/watch?v=OyQ3SaU4KKU;License: Standard Youtube License