Concept explainers
(a)
Interpretation:
The less metallic element among
Concept introduction:
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons. Greater the ease of electron removal, higher will be the electropositivity of the corresponding elements and vice versa.
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons.
Down the group, the number of shells increases with the increase in the
Along the period, the electrons are added in the same outer shell and the effective nuclear charge increases due to which the electrons are attracted to the nucleus by strong electrostatic forces of attraction. Therefore the removal of the electron becomes difficult which results in the decrease of metallic character in a period.
(b)
Interpretation:
The less metallic element among
Concept introduction:
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons. Greater the ease of electron removal, higher will be the electropositivity of the corresponding elements and vice versa.
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons.
Down the group, the number of shells increases with the increase in the atomic number and the outermost valence electrons becomes farther from the nucleus and therefore can be removed easily. So the metallic character increases from top to bottom in a group.
Along the period, the electrons are added in the same outer shell and the effective nuclear charge increases due to which the electrons are attracted to the nucleus by strong electrostatic forces of attraction. Therefore the removal of the electron becomes difficult which results in the decrease of metallic character in a period.
(c)
Interpretation:
The less metallic element among
Concept introduction:
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons. Greater the ease of electron removal, higher will be the electropositivity of the corresponding elements and vice versa.
The metallic character is characterized by the tendency of metals to lose their outermost valence shell electrons.
Down the group, the number of shells increases with the increase in the atomic number and the outermost valence electrons becomes farther from the nucleus and therefore can be removed easily. So the metallic character increases from top to bottom in a group.
Along the period, the electrons are added in the same outer shell and the effective nuclear charge increases due to which the electrons are attracted to the nucleus by strong electrostatic forces of attraction. Therefore the removal of the electron becomes difficult which results in the decrease of metallic character in a period.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
CHEMISTRY THE MOLECULAR NATURE OF MATTER
- How many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forwardCan you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forward
- Synthesize the following compound from cyclohexanol, ethanol, and any other needed reagentsarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s) Be sure to account for all bond-breaking and bond-making steps Problem 73 of 10 Drawing Amows ro HO Donearrow_forward
- 12. Synthesize the following target molecules (TMs) using the specified starting materials. .CI a) HO3S SM TM b) HO- SMarrow_forwardFor a titration of 20.00 mL of 0.0500 M H2SO4 with 0.100 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin; 2) 10.00 mL; 3) 20.00 mL; 4) 30.00 mL. Ka2 = 1.20×10-2 for H2SO4.arrow_forwardWrite the systematic name of each organic molecule: structure name show work. don't give Ai generated solutionarrow_forward
- Show work with explanation needed. Don't give Ai generated solutionarrow_forwardA Elschboard Part of SpeechT-D Alt Leaming App app.aktiv.com Curved arrows are used to illustrate the flow of electrons. Using the provided resonance structures, draw the curved electron- pushing arrows to show the interconversion between resonance hybrid contributors. Be sure to account for all bond-breaking and bond-making steps. Include all lone pairs and formal charges in the structures. Problem 45 of 10 I Select to Add Arrows N Please selarrow_forwardSo I'm working on molecular geometry. Can you help me with this stuff here and create three circles: one that's 120, one that’s 180, and one that’s 109.5?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





