MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 1 term (6 months)
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 1 term (6 months)
9th Edition
ISBN: 9781305971226
Author: Braja M. Das; Khaled Sobhan
Publisher: Cengage Learning US
Question
100%
Book Icon
Chapter 9, Problem 9.4P

(a)

To determine

Find the change in effective stress σ at point C when the water table drops by 2 m.

(a)

Expert Solution
Check Mark

Answer to Problem 9.4P

The change in effective stress at point C when the water table drops by 2 m is 12.64kN/m2_.

Explanation of Solution

Given information:

The thickness H1 of soil layer 1 is 5 m.

The thickness H2 of soil layer 2 is 8 m.

The thickness H3 of soil layer 3 is 3 m.

The void ratio (e) of soil in the first layer is 0.7.

The specific gravity Gs of the soil in the first layer is 2.69.

The void ratio (e) of soil in the second layer is 0.55.

The depth (h) of water table drop is 2 m.

Calculation:

Determine the dry unit weight γd of the soil in the first layer using the relation.

γd(layer1)=Gsγw1+e

Here, γw is the unit weight of the water.

Take the unit weight of the water as 9.81kN/m3.

Substitute 2.69 for Gs, 9.81kN/m3 for γw, and 0.7 for e.

γd(layer1)=2.69×9.811+0.7=15.52kN/m3

Determine the dry unit weight γd(layer2) of the soil in the second layer if the water table drops by 2 m using the relation.

γd(layer2)=Gsγw1+e

Substitute 2.7 for Gs, 9.81kN/m3 for γw, and 0.55 for e.

γd(layer2)=2.70×9.811+0.55=17.08kN/m3

Determine the saturated unit weight γsat of the soil in the second layer using the relation.

γsat(layer2)=γw(Gs+e)1+e

Substitute 9.81kN/m3 for γw, 2.7 for Gs, and 0.55 for e.

γsat(layer2)=9.81(2.7+0.55)1+0.55=20.57kN/m3

Calculate the total stress at point C (13 m) using the relation.

σ=γd×H1+γsat×H2

Substitute 15.52kN/m3 for γd, 5 m for H1, 20.57kN/m3 for γsat, and 8.0 m for H2.

σ=15.52×5.0+20.57×8.0=242.16kN/m2

Calculate the pore water pressure at point C (13 m) using the relation.

u=γw×H2

Substitute 9.81kN/m3 for γw and 8 m for H2.

u=9.81×8=78.48kN/m2

Calculate the effective stress at point C (13 m) using the relation.

σ=σu

Substitute 242.16kN/m2 for σ and 78.48kN/m2 for u.

σ=242.1678.48=163.68kN/m2

Water table drops by 2 m:

Calculate the total stress at point C when the water level drops by 2 m using the relation.

σ=γd×H1+γd(layer2)×h+γsat×H2

Substitute 15.52kN/m3 for γd, 5 m for H1, 17.08kN/m3 for γd(layer2), 2 m for h, 20.57kN/m3 for γsat, and 6.0 m for H2.

σ=15.52×5.0+17.08×2.0+20.57×6.0=235.18kN/m2

Calculate the pore water pressure at point C when the water table drops by 2 m using the relation.

u=γw×(H2h)

Substitute 9.81kN/m3 for γw, 8 m for H2, and 2.0 m for h.

u=9.81×(82)=58.86kN/m2

Calculate the effective stress at point C when the water table drops by 2 m using the relation.

σ=σu

Substitute 235.18kN/m2 for σ and 58.86kN/m2 for u.

σ=235.1858.86=176.32kN/m2

Determine the change in effective stress when the water level drops by 2 m from the original position using the relation;

Changeineffectivestress=(EffectivestressatchangedwaterlevelEffectivestressatinitialwaterlevel)

Substitute 176.32kN/m2 for effective stress at changed water level and 163.68kN/m2 for effective stress at initial water level.

Changeineffectivestress=176.32163.68=12.64kN/m2

Thus, the change in effective stress at point C when the water table drops by 2 m is 12.64kN/m2_.

(b)

To determine

The change in effective stress σ at point C when the water rises to the surface up to point A.

(b)

Expert Solution
Check Mark

Answer to Problem 9.4P

The change in effective stress at point C rises to the surface up to point A is 28.85kN/m2_.

Explanation of Solution

Given information:

The thickness H1 of soil layer 1 is 5 m.

The thickness H2 of soil layer 2 is 8 m.

The thickness H3 of soil layer 3 is 3 m.

The void ratio (e) of soil in the first layer is 0.7.

The specific gravity Gs of the soil in the first layer is 2.69.

The void ratio (e) of soil in the second layer is 0.55.

Calculation:

Determine the saturated unit weight γsat of the soil in the first layer using the relation.

γsat(layer1)=γw(Gs+e)1+e

Substitute 9.81kN/m3 for γw, 2.69 for Gs, and 0.7 for e.

γsat(layer1)=9.81(2.69+0.7)1+0.7=19.56kN/m3

Calculate the total stress at point C (13 m) using the relation.

σ=γsat(layer1)×H1+γsat(layer2)×H2

Substitute 19.56kN/m3 for γsat(layer1), 5 m for H1, 20.57kN/m3 for γsat(layer2), and 8.0 m for H2.

σ=19.56×5.0+20.57×8.0=262.36kN/m2

Calculate the pore water pressure at point C (13 m) using the relation.

u=γw×(H1+H2)

Substitute 9.81kN/m3 for γw, 5 m for H1, and 8 m for H2.

u=9.81×(5+8)=127.53kN/m2

Calculate the effective stress at point C (13 m) using the relation.

σ=σu

Substitute 262.36kN/m2 for σ and 127.53kN/m2 for u.

σ=262.36127.53=134.83kN/m2

Water table rises to the surface up to point A:

Determine the change in effective stress when the water table rises to the surface up to point A using the relation;

Changeineffectivestress=(EffectivestressatinitialwaterlevelEffectivestressatpointC)

Substitute 163.68kN/m2 for effective stress at initial water level and 134.83kN/m2 for effective stress at point C.

Changeineffectivestress=163.68134.83=28.85kN/m2

Thus, the change in effective stress at point C rises to the surface up to point A is 28.85kN/m2_.

(c)

To determine

Find the change in effective stress σ at point C when the water level rises 3 m above point A due to flooding.

(c)

Expert Solution
Check Mark

Answer to Problem 9.4P

The change in effective stress at point C when the water level rises 3 m above point A due to flooding is 28.85kN/m2_.

Explanation of Solution

Given information:

The thickness H1 of soil layer 1 is 5 m.

The thickness H2 of soil layer 2 is 8 m.

The thickness H3 of soil layer 3 is 3 m.

The void ratio (e) of soil in the first layer is 0.7.

The specific gravity Gs of the soil in the first layer is 2.69.

The depth (h) of water rises above point A is 3.0 m.

Calculation:

Calculate the total stress at point C (16 m) using the relation.

σ=γw×h+γsat×H1+γsat×H2

Substitute 9.81kN/m3 for γw, 3.0 m for h, 19.56kN/m3 for γsat, 5 m for H1, 20.57kN/m3 for γsat, and 8.0 m for H2.

σ=9.81×3.0+19.56×5.0+20.57×8.0=291.79kN/m2

Calculate the pore water pressure at point C (16 m) using the relation.

u=γw×(h+H1+H2)

Substitute 9.81kN/m3 for γw, 3 m for h, 5 m for H1, and 8 m for H2.

u=9.81×(3+5+8)=156.96kN/m2

Calculate the effective stress at point C (16 m) using the relation.

σ=σu

Substitute 291.79kN/m2 for σ and 156.96kN/m2 for u.

σ=291.79156.96=134.83kN/m2

Water level rises 3 m above point A due to flooding:

Determine the change in effective stress when the water level rises 3 m above point A due to flooding using the relation;

Changeineffectivestress=(EffectivestressatinitialwaterlevelEffectivestressatpointC)

Substitute 163.68kN/m2 for effective stress at initial water level and 134.83kN/m2 for effective stress at point C.

Changeineffectivestress=163.68134.83=28.85kN/m2

Thus, the change in effective stress at point C when the water level rises 3 m above point A due to flooding is 28.85kN/m2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2-7 The force P applied at joint D of the square frame causes the frame to sway and form the dashed rhombus. Determine the average normal strain developed in wire AC. Assume the three rods are rigid. I understand how you calculate length LAC its just the sqrt(400^2+400^2) = 565.685mm. I do understand that you have to take LAC'-LAC/LAC to get .0258mm/mm. I'm just not understanding the cosine law used to calculate LAC'. I guess what I'm asking is why do you use cos instead of sin or tangent? I've been trying to understand why that was used for a bit now and it's probably something simple I'm forgetting. If you can, please clarify it in detail. Thank you so much!
Traffic flow on a three-lane (one direction) freeway can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take 2 hours. It is estimated that the capacity at the work zone will be reduced by 30 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 70 mi/h and the jam density is 150 veh/mi/In. If it is estimated that the demand flow on the highway during the emergency repairs is 85 percent of the capacity, using the deterministic approach, determine the following. (a) the maximum queue length (in veh) that will be formed veh (b) the total delay (in h) h (c) the number of vehicles that will be affected by the incident veh (d) the average individual delay (in min) min
Non-constant sections are used in bridges without changing the appearance of the bridge significantly. Refer to the figure below. Compute the ratio of moment inertial after to before of the plate girder shown (greater than 1). A 10x0.5" steel plate of the same grade as the plate girder and is fillet welded to the flanges

Chapter 9 Solutions

MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 1 term (6 months)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning