Concept explainers
(a)
Interpretation:
The relative strength of carbon-oxygen double bond and carbon-oxygen single bond in formic acid is to be ranked.
Concept introduction:
A covalent bond is formed by the interaction of two nonmetals. Covalent compounds are formed by the sharing of electrons between two or more atoms. A covalent bond is the strong forces of attraction between the shared pairs of electrons and the nuclei of the combining atoms.
In the covalent bond, bond energy is the energy needed to overcome the attractive forces between the nuclei of atoms and the shared pair of electrons. Bond energy is the enthalpy change associated with breaking of bond of
The bond energy of a bond is directly related to the bond strength of a bond. Greater the bond strength of the bond more will be the bond energy of the bond and vice-versa.
Bond order is the number of electron pairs that are shared between the pair of atoms. The bond order of a pair of an atom is directly proportional to the strength of the bonds.
(b)
Interpretation:
The relative strength of the carbon-hydrogen bond and oxygen-hydrogen bond in formic acid is to be ranked.
Concept introduction:
A covalent bond is formed by the interaction of two nonmetals. Covalent compounds are formed by the sharing of electrons between two or more atoms. A covalent bond is the strong forces of attraction between the shared pairs of electrons and the nuclei of the combining atoms.
In the covalent bond, bond energy is the energy needed to overcome the attractive forces between the nuclei of atoms and the shared pair of electrons. Bond energy is the enthalpy change associated with breaking of bond of
The bond energy of a bond is directly related to the bond strength of a bond. Greater the bond strength of the bond more will be the bond energy of the bond and vice-versa. In the covalent bond, the strength of the bond is inversely related to the size of the atom.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
MOLECULAR NATURE OF MATTER ALEKS ACCESS
- When two solutions, one of 0.1 M KCl (I) and the other of 0.1 M MCl (II), are brought into contact by a membrane. The cation M cannot cross the membrane. At equilibrium, x moles of K+ will have passed from solution (I) to (II). To maintain the neutrality of the two solutions, x moles of Cl- will also have to pass from I to II. Explain this equality: (0.1 - x)/x = (0.1 + x)/(0.1 - x)arrow_forwardCalculate the variation in the potential of the Pt/MnO4-, Mn2+ pair with pH, indicating the value of the standard potential. Data: E0 = 1.12.arrow_forwardGiven the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt. Calculate the emf of the cell as a function of pH.arrow_forward
- The decimolar calomel electrode has a potential of 0.3335 V at 25°C compared to the standard hydrogen electrode. If the standard reduction potential of Hg22+ is 0.7973 V and the solubility product of Hg2Cl2 is 1.2x 10-18, find the activity of the chlorine ion at this electrode.Data: R = 8.314 J K-1 mol-1, F = 96485 C mol-1, T = 298.15 K.arrow_forward2. Add the following group of numbers using the correct number of significant figures for the answer. Show work to earn full credit such as rounding off the answer to the correct number of significant figures. Replace the question marks with the calculated answers or write the calculated answers near the question marks. 10916.345 37.40832 5.4043 3.94 + 0.0426 ? (7 significant figures)arrow_forwardThe emf at 25°C of the cell: Pt l H2(g) l dis X:KCl (sat) l Hg2Cl2(s) l Hg l Pt was 612 mV. When solution X was replaced by normal phosphate buffer solution with a pH of 6.86, the emf was 741 mV. Calculate the pH of solution X.arrow_forward
- Indicate how to calculate the potential E of the reaction Hg2Cl2(s) + 2e ⇄ 2Hg + 2Cl- as a function of the concentration of Cl- ions. Data: the solubility product of Hg2Cl2.arrow_forwardHow can Beer’s Law be used to determine the concentration in a selected food sample. Provide an in-depth discussion and examples of this.arrow_forwardb) H3C- H3C Me CH 3 I HN Me H+arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





