Concept explainers
(a)
Interpretation:
The relative strength of carbon-oxygen double bond and carbon-oxygen single bond in formic acid is to be ranked.
Concept introduction:
A covalent bond is formed by the interaction of two nonmetals. Covalent compounds are formed by the sharing of electrons between two or more atoms. A covalent bond is the strong forces of attraction between the shared pairs of electrons and the nuclei of the combining atoms.
In the covalent bond, bond energy is the energy needed to overcome the attractive forces between the nuclei of atoms and the shared pair of electrons. Bond energy is the enthalpy change associated with breaking of bond of
The bond energy of a bond is directly related to the bond strength of a bond. Greater the bond strength of the bond more will be the bond energy of the bond and vice-versa.
Bond order is the number of electron pairs that are shared between the pair of atoms. The bond order of a pair of an atom is directly proportional to the strength of the bonds.
(b)
Interpretation:
The relative strength of the carbon-hydrogen bond and oxygen-hydrogen bond in formic acid is to be ranked.
Concept introduction:
A covalent bond is formed by the interaction of two nonmetals. Covalent compounds are formed by the sharing of electrons between two or more atoms. A covalent bond is the strong forces of attraction between the shared pairs of electrons and the nuclei of the combining atoms.
In the covalent bond, bond energy is the energy needed to overcome the attractive forces between the nuclei of atoms and the shared pair of electrons. Bond energy is the enthalpy change associated with breaking of bond of
The bond energy of a bond is directly related to the bond strength of a bond. Greater the bond strength of the bond more will be the bond energy of the bond and vice-versa. In the covalent bond, the strength of the bond is inversely related to the size of the atom.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
CHEMISTRY THE MOLECULAR NATURE OF MATTER
- What is the mechanism for this?arrow_forwardFor questions 1-4, consider the following complexes: [Co(CN)6], [COC14]², [Cr(H2O)6]²+ 4. Room temperature (20°C) measurement of molar magnetic susceptibility (Xm) for Fe(NH4)2(SO4)2×6H2O is 1.1888 x 102 cgs (Gaussian units). Calculate effective magnetic moment and provide a number of unpaired electrons for the iron ion. Use this number to rationalize the coordination geometry around iron center. (4 points)arrow_forward7. Describe the expected 31P and 19F (where applicable) NMR spectral patterns for the following compounds (indicate number of signals and their splitting patterns). a) tetraphenyldiphosphine Ph Ph P-P Ph Ph Ph Ph ' b) tetraphenyldiphosphine monoxide P-P-Ph Ph (2 points) (2 points c) tetrafluorophosphonium hexafluorophosphate [PF4]*[PF6]¯ (4 points)arrow_forward
- 3. For questions 1-4, consider the following complexes: [Co(CN)6]4, [COC14]², [Cr(H2O)6]²+ Which (if any) of these complexes would be expected to display Jahn-Teller distortion? (2 points)arrow_forwardWhat is Instrumental Neutron Activation and what are the advantages and disadvantages in using its applications? (I'm doing an in class assignment and need better understanding of what the instrument can be used for) Please include references so that I can better understand the application of how the instrument works!arrow_forwardWhat is Isotope Analysis and what are the advantages and disadvantages in using its applications and instrumentalization? Please include references so that I can better understand how the instrument works!arrow_forward
- 5. Count the electrons on the following complexes and state whether they follow the 18- electron rule: (3 points) Fe(CO)5 Ni(PMe3)4 PMe3 is trimethylphosphine Mn(CO)5Brarrow_forwardFor questions 1-4, consider the following complexes: [Co(CN)6]+, [CoCl4]², [Cr(H2O)6]²+ 2. Draw the corresponding d-orbital splitting for each of the complexes; predict the spin- state (low-spin/high spin) for each of the complexes (if applicable); explain your arguments. Calculate the crystal field stabilization energy for each complex (in Ao or At). (6 points)arrow_forwardFor questions 1-4, consider the following complexes: [Co(CN)6]4, [COC14]², [Cr(H2O)6]²+ 1. Assign oxidation number to the metal, then indicate d-electron count. (3 points)arrow_forward
- Using iodometry I want to titrate a sodium thiosulfate solution and I use 15 mL. If I have 50 mL of a 0.90 M copper solution and KI, what will be the molarity of sodium thiosulfate?arrow_forwardDraw the product formed when the following pair of compounds is treated with NaOEt in ethanol. + i CNarrow_forwardI need help with the followingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





