Concept explainers
(a)
Interpretation:
To analyse whether the given statement - Half-life is the time it takes one-half of a radioactive sample to decay, is true or not.
Concept Introduction:
Half-life is defined as a time required for decaying one-half part of any sample which is a radioactive material. Some elements are having isotopes that decay and disappear in a day while some can remain radioactive for billions of years. It can be calculated as below:
(b)
Interpretation:
To analyse whether the given statement − The concept of half-life refers to nuclei undergoing alpha, beta, and positron emission; it does not apply to nuclei undergoing gamma emission, is true or not.
Concept Introduction:
Half-life is defined as a time required for decaying one-half part of any sample which is a radioactive material. Some elements are having isotopes that decay and disappear in a day while some can remain radioactive for billions of years. It can be calculated as below:
(c)
Interpretation:
To analyse whether the given statement - At the end of two half-lives, one-half of the original radioactive sample remains; at the end of three half-lives, one-third of the original sample remains, is true or not.
Concept Introduction:
Half-life is defined as a time required for decaying one-half part of any sample which is a radioactive material. Some elements are having isotopes that decay and disappear in a day while some can remain radioactive for billions of years. It can be calculated as below:
(d)
Interpretation:
To analyse whether the given statement - If the half-life of a particular radioactive sample is 12 minutes, a time of 36 minutes represnts three half-lives, is true or not.
Concept Introduction:
Half-life is defined as a time required for decaying one-half part of any sample which is a radioactive material. Some elements are having isotopes that decay and disappear in a day while some can remain radioactive for billions of years. It can be calculated as below:
(e)
Interpretation:
To analyse whether the given statement - At the end of three half-lives, only 12.5% of anoriginal radioactive sample remains, is true or not.
Concept Introduction:
Half-life is defined as a time required for decaying one-half part of any sample which is a radioactive material. Some elements are having isotopes that decay and disappear in a day while some can remain radioactive for billions of years. It can be calculated as below:
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- If the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardLaser. Indicate the relationship between metastable state and stimulated emission.arrow_forwardThe table includes macrostates characterized by 4 energy levels (&) that are equally spaced but with different degrees of occupation. a) Calculate the energy of all the macrostates (in joules). See if they all have the same energy and number of particles. b) Calculate the macrostate that is most likely to exist. For this macrostate, show that the population of the levels is consistent with the Boltzmann distribution. macrostate 1 macrostate 2 macrostate 3 ε/k (K) Populations Populations Populations 300 5 3 4 200 7 9 8 100 15 17 16 0 33 31 32 DATO: k = 1,38×10-23 J K-1arrow_forward
- Don't used Ai solutionarrow_forwardIn an experiment, the viscosity of water was measured at different temperatures and the table was constructed from the data obtained. a) Calculate the activation energy of viscous flow (kJ/mol). b) Calculate the viscosity at 30°C. T/°C 0 20 40 60 80 η/cpoise 1,972 1,005 0,656 0,469 0,356arrow_forwardDon't used Ai solutionarrow_forward
- Let's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- The number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forwardHow many grams of C are combined with 3.75 ✕ 1023 atoms of H in the compound C5H12?arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning