
Concept explainers
(a)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(b)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(c)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(d)
Interpretation:
The value and units of the slope of the energy versus wavelength for given Planck’s law equation at given temperatures and wavelengths is to be calculated.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.

Answer to Problem 9.30E
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
Explanation of Solution
It is given that temperature and wavelength is
To calculate slope of the energy versus wavelength, the Planck’s law equation used is,
Where,
•
•
•
•
•
Substitute the values of constants, temperature and wavelength in the given equation.
Thus, the slope of the energy versus wavelength is
The value and units of the slope of the energy versus wavelength at given temperature and wavelength is
(e)
Interpretation:
The results are to be compared with those of exercise
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by a rearrangement of equation

Answer to Problem 9.30E
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
Explanation of Solution
On comparing the results from exercise
The values of slope of the plot of energy versus wavelength from Rayleigh-Jeans law is similar to that of Planck’s radiation distribution law at temperature and wavelength
(f)
Interpretation:
The temperatures and spectral regions at which the Rayleigh-Jeans law is close to Planck’s law are to be identified.
Concept introduction:
Planck’s equation can also be represented in the form of energy density distribution of a black body radiation at a given temperature and wavelength. This equation is known as Planck’s radiation distribution law.
The slope of the plot of energy versus wavelength for the Rayleigh-Jeans law is given by,

Answer to Problem 9.30E
At higher temperatures and longer wavelengths, the Rayleigh-Jeans law is close to Planck’s law.
Explanation of Solution
On comparing the results from exercise
At higher temperatures and longer wavelengths the Rayleigh-Jeans law is close to Planck’s law.
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICAL CHEMISTRY
- (ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward(ME EX1) Prblm #4-11 Can you please help me and explain these I'm very confused in detail please. Prblm number 9 I don't understand at all (its soo confusing to me and redraw it so I can better depict it).arrow_forward
- ME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forwardCalculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forward
- A. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forwardWater is boiling at 1 atm pressure in a stainless steel pan on an electric range. It is observed that 2 kg of liquid water evaporates in 30 min. Find the rate of heat transfer to the water (kW).arrow_forwardCould you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the resonance structures that were given please.arrow_forward
- Could you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the question.arrow_forwardplease solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.arrow_forwardCan you please solve and explain this for me in a simple way? I cant seem to comprehend this problem.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




