Concept explainers
Find the total stress
Answer to Problem 9.1P
The total stress at point A is
The pore water pressure at point A is
The effective stress at point A is
The total stress at point B is
The pore water pressure at point B is
The effective stress at point B is
The total stress at point C is
The pore water pressure at point C is
The effective stress at point C is
The total stress at point D is
The pore water pressure at point D is
The effective stress at point D is
Explanation of Solution
Given information:
The thickness
The thickness
The thickness
The dry unit weight
The saturated unit weight
The saturated unit weight
Calculation:
Calculate the total stress at point A (0 ft).
Thus, the total stress at point A is
Calculate the pore water pressure at point A (0 ft).
Thus, pore water pressure at point A is
Calculate the effective stress at point A (0 ft) using the relation.
Substitute 0 for
Thus, effective stress at point A is
Calculate the total stress at point B (7 ft) using the relation.
Substitute
Thus, total stress at point B is
Calculate the pore water at point B (7 ft) using the relation.
Thus, the pore water pressure at point B is
Calculate the effective stress at point B (7 ft) using the relation.
Substitute
Thus, the effective stress at point B is
Calculate the total stress at point C (19 ft) using the relation.
Substitute
Thus, the total stress at point C is
Calculate the pore water pressure at point C (19 ft) using the relation.
Here,
Take the unit weight of the water as
Substitute
Thus, the pore water pressure at point C is
Calculate the effective stress at point C (19 ft) using the relation.
Substitute
Thus, the effective stress at point C is
Calculate the total stress at point D (25 ft) using the relation.
Substitute
Thus, the total stress at point D is
Calculate the pore water pressure at point D (25 ft) using the relation.
Substitute
Thus, the pore water pressure at point D is
Calculate the effective stress at point D (25 ft) using the relation.
Substitute
Thus, the effective stress at point D is
Show the plot between depth and total stress as in Figure 1.
Show the plot between depth and pore water pressure as in Figure 2.
Show the plot between depth and effective stress as in Figure 3.
Want to see more full solutions like this?
Chapter 9 Solutions
PRINCIPLES OF GEOTECH.ENGINEERING >LL+M
- 3. Drinking water is piped from a water main into a house via a PVC (i.e., smooth) pipe. There is a total of 20 linear feet of 1" diameter pipe between the water main and a point just inside the house that is 10 ft above the water main. This drinking water pipe branches from the water main (K₁ = 0.2), a water meter taps into the pipe (KL = 7), there are two 90° bends (K₁ = 1.5), and finally a (fully open) water shutoff ball valve (K₁ = 0.05) before the point just inside the house. The pipe maintains a flow of 0.05 ft³/s. If the goal is for the gage pressure of the water to be 8640 lb/ft² (aka 60 psi) just inside the house, what must the gage pressure of the water be at the water main? Leave your answer in lb/ft.2. water meter 90° elbow water shutoff house branch flow Il diameter z = 10 A ball valve, 90° elbow fully open z=0ft water main *drawing not to scalearrow_forwardQ1/ Find 1- Find principle stresses (1 and 2) angle of rotation and draw 2- Ty-max then draw the element with stresses 3- If the element is rotated in O find the stresses and then draw the element with stresses If you knew that oy=15 Ox=20 Txy=20 0(cw)=10 Txyarrow_forward2. The drag force (F) on a boat is influenced by the water velocity (V), water viscosity (µ), water density (p), and the width of the boat (w). What would be a suitable set of pi terms for exploring this relationship?arrow_forward
- Given w = 6 kip/ft, P = 27 kips, M = 22 kip-ft a = 3 ft, b = 5 ft, c = 5 ft, d = 5 ft. W M B b d What is the absolute maximum shear? Earrow_forwardGiven w = 6 kip/ft, P = 27 kips, M = 22 kip-ft a = 3 ft, b = 5 ft, c = 5 ft, d = 5 ft. W M B b C d E Determine the reaction force at Earrow_forwardGiven w = 6 kip/ft, P = 27 kips, M = 22 kip-ft a = 3 ft, b = 5 ft, c = 5 ft, d = 5 ft. M W B b d E Determine the reaction force at Barrow_forward
- The cross-section shown is used to support the loads on the beam below. The moment of inertia of the section is |= 1384 in and distance of the centroid of the section from the bottom is y = 5.8 in. [MA=4000 lb-ft, w=900 lb/ft, P=1500 lb, a = 5 ft, b = 8 ft, c = 3 ft, d = 6 ft] Ma W d 15 in. 1.5ink k1.5 in. Cross section of the beam Determine the maximum tension bending stress at any location along the beam. 2 inarrow_forwardQ2. A cylindrical steel pressure vessel (R-2 m and R-2.03 m) stores gas at pressure P-900 kPa. Calculate: 1. The resulting axial and hoop stresses 2. The resulting in-plane and out-of-plane shear stresses 3. The maximum pressure Pms which can be applied for there to be a factor of safety of 2 according to von Misesarrow_forwardConsider the space truss represented schematically in Figure 1. It has 21 struts and a fixed support at "A". At joint "G", it is applied a force vector with a component of -10 N, along the x-axis direction, and a component of 40 N, along the y-axis direction, as shown in Figure 1. Using the method of joints, calculate the forces for the struts converging at joint "E", i.e. the forces for struts "EA", "EB", "EF", "EG", "ED" and "EH" and specify if the struts are in tension or in compression. (Your submission must include the Free Body Diagram (FBD) and the application of the equilibrium equations for the corresponding FBD). [50%] X 3m A E 0 4 m H N Figure 1 B F ко 10 N G 40 N y 3 marrow_forward
- Consider the truss shown in Figure 2. Two loading cases are applied to the joints: (1) approximately 4 kg of load applied at joint "E", (2) approximately 2 kg of load applied at joint "D" and approximately another 2 kg load applied at joint "F". The trusses have six load cells attached to the struts, as depicted in Figure 2 by the shaded rectangles 1-6. The struts are connected through hinges at the joints. Please observe the lab carefully and record data from the loading cells. (a) Construct a 2-D Free Body Diagram (FBD) for the entire truss in Figure 2 and calculate the supporting forces at point "A" and point "I" for these two cases. According to the calculation results of the two cases, discuss the impact of loading location. [20%] (b) Using the method of sections, calculate the forces in the struts with the load cells (1-6) attached for these two cases. [20%] (c) Tabulate the results of both the calculation and the measurement for the two cases. Provide a short discussion of the…arrow_forwardQ1: Consider the space truss represented schematically in Figure 1. It has 21 struts and a fixed support at "A". At joint "G", it is applied a force vector with a component of -10 N, along the x-axis direction, and a component of 40 N, along the y-axis direction, as shown in Figure 1. Using the method of joints, calculate the forces for the struts converging at joint "E", i.e. the forces for struts "EA", "EB", "EF", "EG", "ED" and "EH" and specify if the struts are in tension or in compression. (Your submission must include the Free Body Diagram (FBD) and the application of the equilibrium equations for the corresponding FBD). [50%] 3 m E N A На KO D 4m FL Figure 1 10 N B G 40 N 0 y 3 marrow_forwardAssignment 1 CH1 Due Date:15/12/2024 1-Eliminate x between these two equations to find the relationship between y and z y = lnx and z = log10 xarrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning