(a)
Interpretation:
The way by which the ionization energy of the main group elements influences their metallic character is to be determined.
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
(a)

Answer to Problem 9.1P
The metallic character of the main group elements decreases with an increase in ionization energy.
Explanation of Solution
On moving across the period in the periodic table, the size of the atoms decreases. Thus the outermost electrons in the atom are closer to the nucleus and are thus harder to be pulled out of the atom. Metals have the specific property of losing electrons. The easier it is for an element to lose an electron, the more is the metallic character of the element. Since a large value of the ionization energy implies more difficulty in extracting an electron from an atom, it thus also indicates a low metallic character as well. Hence, with an increase in the ionization energy of an element, the metallic character decreases.
The metallic character of the main group elements decreases with an increase in ionization energy.
(b)
Interpretation:
The way by which the atomic radius of the main group elements influences their metallic character is to be determined.
Concept introduction:
The atomic radius of an element is defined as the distance of the outermost electron in the atom from its nucleus.
The types of atomic radii are as follows:
1) Covalent radius – Covalent radius is calculated as one half of the distance of the two atoms of the same element that are covalently bonded to each other.
2) Van der Waals radius – Van der Waals radius is calculated as one half the distance between two nuclei of two atoms of the same element that are not bonded to each other.
3) Metallic radius – Metallic radius is calculated as one half the distance between the nuclei of two metallic atoms or ions in the metallic lattice.
(b)

Answer to Problem 9.1P
The metallic character of the main group elements increases with an increase in the atomic radius.
Explanation of Solution
In the periodic table, on moving across the period, the radius of the elements decreases. As the radius decreases, the distance of the outermost electrons from the nucleus of the atom decreases. At a smaller distance from the nucleus, the outermost electrons experience greater forces of attraction from the nucleus and hence are harder to be knocked out of the atom. The atoms of an element have a greater metallic character if they can lose their outermost electrons easily. Hence with an increase in the atomic radius of an element, the metallic character increases.
The metallic character of the main group elements increases with an increase in the atomic radius.
(c)
Interpretation:
The way by which the number of outer electrons of the main group elements influences their metallic character is to be determined.
Concept introduction:
The atomic radius of an element is defined as the distance of the outermost electron in the atom from its nucleus.
The types of atomic radii are as follows:
1) Covalent radius – Covalent radius is calculated as one half of the distance of the two atoms of the same element that are covalently bonded to each other.
2) Van der Waals radius – Van der Waals radius is calculated as one half the distance between two nuclei of two atoms of the same element that are not bonded to each other.
3) Metallic radius – Metallic radius is calculated as one half the distance between the nuclei of two metallic atoms or ions in the metallic lattice.
(c)

Answer to Problem 9.1P
The metallic character decreases with an increase in the number of outermost electrons on moving across a period in the periodic table.
Explanation of Solution
While moving across a period from left to right in the periodic table, the radius of the elements decreases. This happens because the increase in the number of electrons and the protons is the same, whereas on moving down a group in the periodic table, the outermost electrons due to electron shielding experience much lesser nuclear charge and hence are easily knocked out.
Thus while moving across a period, with the increase in the number of outermost electrons, the metallic character decreases due to a decrease in the atomic radius and hence an increase in the ionization potential.
The metallic character decreases with an increase in the number of outermost electrons on moving across a period in the periodic table.
(d)
Interpretation:
The way by which the effective nuclear charge of the main group elements influences their metallic character is to be determined.
Concept introduction:
The effective nuclear charge is the net nuclear charge an electron in an atom experiences. The electrons at the outermost orbitals experience lesser nuclear charge compared to the electrons in the inner orbitals. Thus the inner electrons shield the outer electrons from the attractive forces of the atomic nucleus.
The effective nuclear charge is calculated as follows:
Here,
(d)

Answer to Problem 9.1P
The metallic character of an element decreases with an increase in the effective nuclear charge.
Explanation of Solution
In an atom, as the effective nuclear charge experienced by the outermost electrons increases, the electrons experience more attraction from the nucleus. The electrons experiencing greater nuclear charge are more firmly held in the atom and are thus harder to be knocked out. Elements, in which the outermost electrons are difficult to be knocked out, have decreased metallic character. Therefore, an increase in the effective nuclear charge decreases the metallic character.
The metallic character of an element decreases with an increase in the effective nuclear charge.
Want to see more full solutions like this?
Chapter 9 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- What is the major enolate formed when treated with LDA? And why that one?arrow_forward4. Calculate the total number of sigma bonds and total number of pi bonds in each of the following compounds. a. HH :D: +1 I H-N-C-C-O-H I H b. HH H Н :N=C-C-C=C-CEC-H :0: total o H-C-H H-C = `C-H I H. 11 H-C = C= CH H total o total π total π 1 Harrow_forwardIn the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJarrow_forward
- Indicate the processes in the dismutation of Cu2O.arrow_forward1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…arrow_forwarddraw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forward
- Draw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forwardPost Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forward
- Indicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forwardHow many mL of H2O2 from the 30% bottle must be collected to prepare 6 mL of 6% H2O2.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





