(a)
Interpretation:
The way by which the ionization energy of the main group elements influences their metallic character is to be determined.
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
(a)

Answer to Problem 9.1P
The metallic character of the main group elements decreases with an increase in ionization energy.
Explanation of Solution
On moving across the period in the periodic table, the size of the atoms decreases. Thus the outermost electrons in the atom are closer to the nucleus and are thus harder to be pulled out of the atom. Metals have the specific property of losing electrons. The easier it is for an element to lose an electron, the more is the metallic character of the element. Since a large value of the ionization energy implies more difficulty in extracting an electron from an atom, it thus also indicates a low metallic character as well. Hence, with an increase in the ionization energy of an element, the metallic character decreases.
The metallic character of the main group elements decreases with an increase in ionization energy.
(b)
Interpretation:
The way by which the atomic radius of the main group elements influences their metallic character is to be determined.
Concept introduction:
The atomic radius of an element is defined as the distance of the outermost electron in the atom from its nucleus.
The types of atomic radii are as follows:
1) Covalent radius – Covalent radius is calculated as one half of the distance of the two atoms of the same element that are covalently bonded to each other.
2) Van der Waals radius – Van der Waals radius is calculated as one half the distance between two nuclei of two atoms of the same element that are not bonded to each other.
3) Metallic radius – Metallic radius is calculated as one half the distance between the nuclei of two metallic atoms or ions in the metallic lattice.
(b)

Answer to Problem 9.1P
The metallic character of the main group elements increases with an increase in the atomic radius.
Explanation of Solution
In the periodic table, on moving across the period, the radius of the elements decreases. As the radius decreases, the distance of the outermost electrons from the nucleus of the atom decreases. At a smaller distance from the nucleus, the outermost electrons experience greater forces of attraction from the nucleus and hence are harder to be knocked out of the atom. The atoms of an element have a greater metallic character if they can lose their outermost electrons easily. Hence with an increase in the atomic radius of an element, the metallic character increases.
The metallic character of the main group elements increases with an increase in the atomic radius.
(c)
Interpretation:
The way by which the number of outer electrons of the main group elements influences their metallic character is to be determined.
Concept introduction:
The atomic radius of an element is defined as the distance of the outermost electron in the atom from its nucleus.
The types of atomic radii are as follows:
1) Covalent radius – Covalent radius is calculated as one half of the distance of the two atoms of the same element that are covalently bonded to each other.
2) Van der Waals radius – Van der Waals radius is calculated as one half the distance between two nuclei of two atoms of the same element that are not bonded to each other.
3) Metallic radius – Metallic radius is calculated as one half the distance between the nuclei of two metallic atoms or ions in the metallic lattice.
(c)

Answer to Problem 9.1P
The metallic character decreases with an increase in the number of outermost electrons on moving across a period in the periodic table.
Explanation of Solution
While moving across a period from left to right in the periodic table, the radius of the elements decreases. This happens because the increase in the number of electrons and the protons is the same, whereas on moving down a group in the periodic table, the outermost electrons due to electron shielding experience much lesser nuclear charge and hence are easily knocked out.
Thus while moving across a period, with the increase in the number of outermost electrons, the metallic character decreases due to a decrease in the atomic radius and hence an increase in the ionization potential.
The metallic character decreases with an increase in the number of outermost electrons on moving across a period in the periodic table.
(d)
Interpretation:
The way by which the effective nuclear charge of the main group elements influences their metallic character is to be determined.
Concept introduction:
The effective nuclear charge is the net nuclear charge an electron in an atom experiences. The electrons at the outermost orbitals experience lesser nuclear charge compared to the electrons in the inner orbitals. Thus the inner electrons shield the outer electrons from the attractive forces of the atomic nucleus.
The effective nuclear charge is calculated as follows:
Here,
(d)

Answer to Problem 9.1P
The metallic character of an element decreases with an increase in the effective nuclear charge.
Explanation of Solution
In an atom, as the effective nuclear charge experienced by the outermost electrons increases, the electrons experience more attraction from the nucleus. The electrons experiencing greater nuclear charge are more firmly held in the atom and are thus harder to be knocked out. Elements, in which the outermost electrons are difficult to be knocked out, have decreased metallic character. Therefore, an increase in the effective nuclear charge decreases the metallic character.
The metallic character of an element decreases with an increase in the effective nuclear charge.
Want to see more full solutions like this?
Chapter 9 Solutions
CHEMISTRY: MOLECULAR...(LL) W/ALEKS
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





