You are standing on a saucer-shaped sled at rest in the middle of a frictionless ice rink. Your lab partner throws you a heavy Frisbee You take different actions in successive experimental trials. Rank the following situations according to your final speed from largest to smallest. If your final speed is the same in two cases, give them equal rank. (a) You catch the Frisbee and hold onto it. (b) You catch the Frisbee and throw it back to your partner. (c) You bobble the catch, just touching the Frisbee so that it continues in its original direction more slowly. (d) You catch the Frisbee and throw it so that it moves vertically upward above your head. (e) You catch the Frisbee and set it down so that it remains at rest on the ice.
You are standing on a saucer-shaped sled at rest in the middle of a frictionless ice rink. Your lab partner throws you a heavy Frisbee You take different actions in successive experimental trials. Rank the following situations according to your final speed from largest to smallest. If your final speed is the same in two cases, give them equal rank. (a) You catch the Frisbee and hold onto it. (b) You catch the Frisbee and throw it back to your partner. (c) You bobble the catch, just touching the Frisbee so that it continues in its original direction more slowly. (d) You catch the Frisbee and throw it so that it moves vertically upward above your head. (e) You catch the Frisbee and set it down so that it remains at rest on the ice.
Solution Summary: The author explains how to determine the order of rank of the given situation according to final speed from largest to smallest.
You are standing on a saucer-shaped sled at rest in the middle of a frictionless ice rink. Your lab partner throws you a heavy Frisbee You take different actions in successive experimental trials. Rank the following situations according to your final speed from largest to smallest. If your final speed is the same in two cases, give them equal rank. (a) You catch the Frisbee and hold onto it. (b) You catch the Frisbee and throw it back to your partner. (c) You bobble the catch, just touching the Frisbee so that it continues in its original direction more slowly. (d) You catch the Frisbee and throw it so that it moves vertically upward above your head. (e) You catch the Frisbee and set it down so that it remains at rest on the ice.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.
In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.