Describe the difference between the two processes in

To review: The two processes of cellular respiration (oxidative phosphorylation and substrate- level phosphorylation) that produce ATP and differentiate between them.
Concept introduction: Generally, in cellular respiration, “phosphorylation” refers to the phosphate group shift from a compound for ATP synthesis. Oxidative phosphorylation and substrate-level phosphorylation are two types of phosphorylation processes that occur inside the living organisms for the production of energy.
Explanation of Solution
Differences between oxidative phosphorylation and substrate-level phosphorylation:
S. No. | Oxidative phosphorylation | Substrate-level phosphorylation |
1. | It occurs in the electron transport chain and accounts for the 90% synthesis of ATP. | Substrate-level phosphorylation takes place in glycolysis, citric acid cycle, and accounts for the production of smaller amount of ATP. |
2. | Chemiosmosis is a process in which chemical energy is transformed by electron transport chain to a form that can be used for ATP synthesis. | Used in fermentation along with catabolizing an organic compound to produce ATP. |
3. | ATP is generated from the oxidation of NADH and FADH2 and the subsequent transfer of electrons and pumping of protons. | It occurs if there is a reaction that releases sufficient energy to allow the direct phosphorylation of ADP. |
Refer to Fig 9.6, “An overview of cellular respiration” in the textbook, which shows that NADH and FADH2 are generated during the first two stages of the redox reactions of the glycolysis and citric acid cycle.
The electrons from NADH and FADH2 are accepted from the electron transport chain in the third stage of respiration.
At the final stage of electron transport chain, oxygen and hydrogen ions bind with electrons to form water. The mitochondria store the released energy at each of the step of electron transport chain and an inorganic phosphate is added to ADP to form ATP.
Refer to Fig.9.7, “Substrate-level phosphorylation” in the textbook. In the substrate-level phosphorylation, an enzyme catalyzes the transfer of a phosphate group from an organic substance to ADP to form an ATP. The ATP production in the glycolysis takes place due to substrate-level phosphorylation and also during one of the steps in the citric acid cycle.
Want to see more full solutions like this?
Chapter 9 Solutions
BIOLOGY DUAL ENROLLMENT VERSION
Additional Science Textbook Solutions
Biological Science (6th Edition)
Campbell Essential Biology (7th Edition)
HUMAN ANATOMY
Genetics: From Genes to Genomes
Physics of Everyday Phenomena
Biology: Life on Earth with Physiology (11th Edition)
- Please indentify the unknown organismarrow_forward5G JA ATTC 3 3 CTIA A1G5 5 GAAT I I3 3 CTIA AA5 Fig. 5-3: The Eco restriction site (left) would be cleaved at the locations indicated by the arrows. However, a SNP in the position shown in gray (right) would prevent cleavage at this site by EcoRI One of the SNPs in B. rapa is found within the Park14 locus and can be detected by RFLP analysis. The CT polymorphism is found in the intron of the Bra013780 gene found on Chromosome 1. The Park14 allele with the "C" in the SNP has two EcoRI sites and thus is cleaved twice by EcoRI If there is a "T" in that SNP, one of the EcoRI sites is altered, so the Park14 allele with the T in the SNP has only one EcoRI site (Fig. 5-3). Park14 allele with SNP(C) Park14 allele with SNPT) 839 EcoRI 1101 EcoRI 839 EcoRI Fig. 5.4: Schematic restriction maps of the two different Park14 alleles (1316 bp long) of B. rapa. Where on these maps is the CT SNP located? 90 The primers used to amplify the DNA at the Park14 locus (see Fig. 5 and Table 3 of Slankster et…arrow_forwardFrom your previous experiment, you found that this enhancer activates stripe 2 of eve expression. When you sequence this enhancer you find several binding sites for the gap gene, Giant. To test how Giant interacts with eve, you decide to remove all of the Giant binding sites from the eve enhancer. What results do you expect to see with respect to eve expression?arrow_forward
- What experiment could you do to see if the maternal gene, bicoid, is sufficient to form anterior fates?arrow_forwardYou’re curious about the effect that gap genes have on the pair-rule gene, evenskipped (eve), so you isolate and sequence each of the eve enhancers. You’re particularly interested in one of the enhancers, which is just upstream of the eve gene. Describe an experimental technique you would use to find out where this particular eve enhancer is active.arrow_forwardFor short answer questions, write your answers on the line provided. To the right is the mRNA codon table to use as needed throughout the exam. First letter U บบบ U CA UUCPhe UUA UCU Phe UCC UUG Leu CUU UAU. G U UAC TV UGCys UAA Stop UGA Stop A UAG Stop UGG Trp Ser UCA UCG CCU] 0 CUC CUA CCC CAC CAU His CGU CGC Leu Pro CCA CAA Gin CGA Arg CUG CCG CAG CGG AUU ACU AAU T AUC lle A 1 ACC Thr AUA ACA AUG Mot ACG AGG Arg GUU GCU GUC GCC G Val Ala GAC Asp GGU GGC GUA GUG GCA GCG GAA GGA Gly Glu GAGJ GGG AACASH AGU Ser AAA1 AAG Lys GAU AGA CAL CALUCAO CAO G Third letter 1. (+7) Use the table below to answer the questions; use the codon table above to assist you. The promoter sequence of DNA is on the LEFT. You do not need to fill in the entire table. Assume we are in the middle of a gene sequence (no need to find a start codon). DNA 1 DNA 2 mRNA tRNA Polypeptide C Val G C. T A C a. On which strand of DNA is the template strand (DNA 1 or 2)?_ b. On which side of the mRNA is the 5' end (left or…arrow_forward
- 3. (6 pts) Fill in the boxes according to the directions on the right. Structure R-C R-COOH OH R-OH i R-CO-R' R R-PO4 R-CH3 C. 0 R' R-O-P-OH 1 OH H R-C-H R-N' I- H H R-NH₂ \H Name Propertiesarrow_forward4. (6 pts) Use the molecule below to answer these questions and identify the side chains and ends. Please use tidy boxes to indicate parts and write the letter labels within that box. a. How many monomer subunits are shown? b. Box a Polar but non-ionizable side chain and label P c. Box a Basic Polar side chain and label BP d. Box the carboxyl group at the end of the polypeptide and label with letter C (C-terminus) H H OHHO H H 0 HHO H-N-CC-N-C-C N-C-C-N-GC-OH I H-C-H CH2 CH2 CH2 H3C-C+H CH2 CH2 OH CH CH₂ C=O OH CH2 NH2arrow_forwardplease answer (A,B,C,D,E) questions with the asnwer choice provided below. thank you!arrow_forward
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning





