(a)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a natural gas air flame of temperature 2100 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state.
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2100K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2100K=
Explanation of Solution
Calculation will be done using the following formulas-
And
Energy difference between 3p excited state and ground state for Na atom-
Average Wavelength for the Na atom when transition occurs from 3p state to 3s state is 589.3 nm
h = 6.62607×10-34J-s
c = 3×108m/s
put above values in equation (2)
Ratio of 3p state to ground state of Na atom at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23 J/K
Put the above values in equation (1)
So, the energy difference between 3p and ground state for Mg+ ion-
Average Wavelength for the Mg+ atom when transition of ion occurs from 3p state to 3s state is 280.0 nm
Ratio of 3p state to ground state of Mg+ ion at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23J/K
Put the above values in above equation-
(b)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a hydrogen-oxygen flame of temperature 2900 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2900 K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2900 K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at hydrogen-oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in equ (1)
Ratio of 3p state to ground state of Mg+ ion at hydrogen- oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in above equation-
(c)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is an inductively coupled plasma source of 6000 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 6000K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 6000K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at an inductively coupled plasma source, 6000K-
T = 7250K
k= 1.38×10-23J/K
Put the above values in equation (1)
Ratio of 3p state to ground state of Mg+ ion at an inductively coupled plasma source, 6000K-
T = 6000K
k= 1.38×10-23J/K
Put the above values in above equation-
Want to see more full solutions like this?
Chapter 9 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Don't used Ai solutionarrow_forward3. Devise a retrosynthesis for the problem given below and then provide the corresponding synthesis with all necessary reagents/reactants: RETROSYNTHESIS: SYNTHESIS: Brarrow_forwardSeveral square planar complexes are known for Gold (III) ions but not for Silver (III) why?arrow_forward
- Aiter running various experiments, you determine that the mechanism for the following reaction is bimolecular. CI Using this information, draw the correct mechanism in the space below. X Explanation Check C Cl OH + CI Add/Remove step Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Carrow_forwardComplete the reaction in the fewest number of steps as possible, Draw all intermediates (In the same form as the picture provided) and provide all reagents.arrow_forwardPlease provide steps to work for complete understanding.arrow_forward
- Please provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning