(a)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a natural gas air flame of temperature 2100 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state.
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2100K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2100K=
Explanation of Solution
Calculation will be done using the following formulas-
And
Energy difference between 3p excited state and ground state for Na atom-
Average Wavelength for the Na atom when transition occurs from 3p state to 3s state is 589.3 nm
h = 6.62607×10-34J-s
c = 3×108m/s
put above values in equation (2)
Ratio of 3p state to ground state of Na atom at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23 J/K
Put the above values in equation (1)
So, the energy difference between 3p and ground state for Mg+ ion-
Average Wavelength for the Mg+ atom when transition of ion occurs from 3p state to 3s state is 280.0 nm
Ratio of 3p state to ground state of Mg+ ion at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23J/K
Put the above values in above equation-
(b)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a hydrogen-oxygen flame of temperature 2900 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2900 K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2900 K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at hydrogen-oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in equ (1)
Ratio of 3p state to ground state of Mg+ ion at hydrogen- oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in above equation-
(c)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is an inductively coupled plasma source of 6000 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state
Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 6000K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 6000K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at an inductively coupled plasma source, 6000K-
T = 7250K
k= 1.38×10-23J/K
Put the above values in equation (1)
Ratio of 3p state to ground state of Mg+ ion at an inductively coupled plasma source, 6000K-
T = 6000K
k= 1.38×10-23J/K
Put the above values in above equation-
Want to see more full solutions like this?
Chapter 9 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- (12) Which one of the following statements about fluo- rometry is FALSE? a) Fluorescence is better detected at 90 from the exci- tation direction. b) Fluorescence is typically shifted to longer wave- length from the excitation wavelength. c) For most fluorescent compounds, radiation is pro- duced by a transitionarrow_forwardDon't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used Ai solutionarrow_forwardIndicate the correct option.a) Graphite conducts electricity, being an isotropic materialb) Graphite is not a conductor of electricityc) Both are falsearrow_forward(f) SO: Best Lewis Structure 3 e group geometry:_ shape/molecular geometry:, (g) CF2CF2 Best Lewis Structure polarity: e group arrangement:_ shape/molecular geometry: (h) (NH4)2SO4 Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forward
- 1. Problem Set 3b Chem 141 For each of the following compounds draw the BEST Lewis Structure then sketch the molecule (showing bond angles). Identify (i) electron group geometry (ii) shape around EACH central atom (iii) whether the molecule is polar or non-polar (iv) (a) SeF4 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: (b) AsOBr3 Best Lewis Structure e group arrangement:_ shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles):arrow_forward(c) SOCI Best Lewis Structure 2 e group arrangement: shape/molecular geometry:_ (d) PCls Best Lewis Structure polarity: e group geometry:_ shape/molecular geometry:_ (e) Ba(BrO2): Best Lewis Structure polarity: e group arrangement: shape/molecular geometry: polarity: Sketch (with angles): Sketch (with angles): Sketch (with angles):arrow_forwardDon't used Ai solutionarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning