(a)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a natural gas air flame of temperature 2100 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state.

Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2100K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2100K=
Explanation of Solution
Calculation will be done using the following formulas-
And
Energy difference between 3p excited state and ground state for Na atom-
Average Wavelength for the Na atom when transition occurs from 3p state to 3s state is 589.3 nm
h = 6.62607×10-34J-s
c = 3×108m/s
put above values in equation (2)
Ratio of 3p state to ground state of Na atom at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23 J/K
Put the above values in equation (1)
So, the energy difference between 3p and ground state for Mg+ ion-
Average Wavelength for the Mg+ atom when transition of ion occurs from 3p state to 3s state is 280.0 nm
Ratio of 3p state to ground state of Mg+ ion at natural gas flame, 2100K-
T = 2100K
k= 1.38×10-23J/K
Put the above values in above equation-
(b)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is a hydrogen-oxygen flame of temperature 2900 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state

Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 2900 K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 2900 K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at hydrogen-oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in equ (1)
Ratio of 3p state to ground state of Mg+ ion at hydrogen- oxygen flame, 2900K-
T = 2900K
k= 1.38×10-23J/K
Put the above values in above equation-
(c)
Interpretation:
The ratios of particles present in an atoms or ions in 3p states and in ground state of Na atom and Mg+ needs to be compared when there is an inductively coupled plasma source of 6000 K.
Concept introduction:
Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-
And the calculation of energy of atom and ion is done by the following formula-
Where,
h= Planck’s constant
c = light velocity
λ= wavelength
Ej= energy difference of excited state and ground state

Answer to Problem 9.14QAP
Ratio of particle present in an atom in 3p states and in ground state of Na at 6000K =
Ratio of particle present in an atom in 3p states and in ground state of Mg+ at 6000K=
Explanation of Solution
Ratio of 3p state to ground state of Na atom at an inductively coupled plasma source, 6000K-
T = 7250K
k= 1.38×10-23J/K
Put the above values in equation (1)
Ratio of 3p state to ground state of Mg+ ion at an inductively coupled plasma source, 6000K-
T = 6000K
k= 1.38×10-23J/K
Put the above values in above equation-
Want to see more full solutions like this?
Chapter 9 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- ASP please....arrow_forwardNonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forward
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
