EBK EXPLORING CHEMICAL ANALYSIS
EBK EXPLORING CHEMICAL ANALYSIS
5th Edition
ISBN: 9781319416942
Author: Harris
Publisher: VST
Question
Book Icon
Chapter 9, Problem 9.14P
Interpretation Introduction

Interpretation:

Volume of KOH that is added to HEPES to give pH equals to 7.40 has to be calculated.

Concept Introduction:

The equation for buffer is described by Henderson-Hasselbach equation and it is a rearranged form of equilibrium constant, Ka. It relates pH of buffer solution and pKa value. It also helps to find equilibrium pH in acid-base reactions. Consider an equation of dissociation of an acid as follows:

  HAH++A

Formula to calculate pH is as follows:

  pH=pKa+log([A][HA])

Here,

pKa is acid dissociation constant of weak acid HA.

[A] is concentration of conjugate base A

[HA] is concentration of acid HA.

Concentration of a solution is expressed by molarity and is denoted by M. It is defined as the ratio of number of moles of solute to volume of solution in 1 L.

The formula to calculate moles is as follows:

  Moles=mass of solutemolar mass of solute

The formula used to calculate concentration is as follows:

  Concentration=molesvolume of solution(L)

Blurred answer
Students have asked these similar questions
Lab Data The distance entered is out of the expected range. Check your calculations and conversion factors. Verify your distance. Will the gas cloud be closer to the cotton ball with HCI or NH3? Did you report your data to the correct number of significant figures? - X Experimental Set-up HCI-NH3 NH3-HCI Longer Tube Time elapsed (min) 5 (exact) 5 (exact) Distance between cotton balls (cm) 24.30 24.40 Distance to cloud (cm) 9.70 14.16 Distance traveled by HCI (cm) 9.70 9.80 Distance traveled by NH3 (cm) 14.60 14.50 Diffusion rate of HCI (cm/hr) 116 118 Diffusion rate of NH3 (cm/hr) 175.2 175.2 How to measure distance and calculate rate
For the titration of a divalent metal ion (M2+) with EDTA, the stoichiometry of the reaction is typically: 1:1 (one mole of EDTA per mole of metal ion) 2:1 (two moles of EDTA per mole of metal ion) 1:2 (one mole of EDTA per two moles of metal ion) None of the above
Please help me solve this reaction.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY