Concept explainers
A.
Virtual address:
Virtual page number (VPN) and virtual page offset (VPO) are the two components of virtual address. Virtual address is “14 bits” format.
A.
Explanation of Solution
Given data:
Virtual address = 0x027C
The given virtual address is in hexadecimal format; convert it into binary format. Convert each Hexadecimal digit to a 4 bit binary equivalent:
0 | 2 | 7 | C |
0000 | 0010 | 0111 | 1100 |
The above binary values are filled in the virtual address 14 bits format as follows,
Virtual address format:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
B.
The page size (P) is 64bytes; using the page size finds the number of bits in VPN.
The formula for page size as follows:
Substitute “P = 64” in the above formula
Therefore, the “p” value represents virtual page offset (VPO) and physical page offset (PPO).
Number of bits in VPN is calculated as follows:
n = 14
p = 6
The VPN has additional two more components. They are TLB tag (TLBT) and TLB index (TLBI). The TLB is “4 ways” associative with “16” entries totally. Using the TLB find the value of TLBI and TLBT.
The formula for TLB as follows:
Substitute “T = 4” in the above formula
Therefore, the “t” value represents TLBI.
TLBI and TLBT are calculated as follows:
The “t” value represents TLBI. Therefore, the value of TLBI is “2”.
TLBI = 2
VPN = 8
Therefore, the value of TLBT is “6”.
B.
Explanation of Solution
Virtual address format:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
The higher-order “8 bits” of the virtual address represents “VPN” and the lower-order “6 bits” of the virtual address represents “VPO”. The higher-order “6 bits” of the VPN represents “TLBT” and the lower-order “2 bits” of the VPN represents “TLBI”
Value of VPN:
13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
VPN = 0000 1001 = 0x9
Value of TLB index:
7 | 6 |
0 | 1 |
TLB index = 01 = 0x1
Value of TLB tag:
13 | 12 | 11 | 10 | 9 | 8 |
0 | 0 | 0 | 0 | 1 | 0 |
TLB tag = 00 0010 = 0x2
TLB hit: No
There is a no valid match in the virtual address.
Page fault: No
There is a valid PTE and returns the cached PPN from the page table (PTE).
Value of PPN:
The cached PPN from the page table is “0x17”.
Value of VPO:
5 | 4 | 3 | 2 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
VPO = 11 1100 = 3C
Completed Table:
Parameter | Value |
VPN | 0x9 |
TLB index | 0x1 |
TLB tag | 0x2 |
TLB hit? (Y/N) | N |
Page fault? (Y/N) | N |
PPN | 0x17 |
C.
Physical address:
Physical page number (PPN) and physical page offset (PPO) are the two components of physical address. Physical address is “12 bits” format. The physical page offset (PPO) is identical to the virtual page offset (VPO).
C.
Explanation of Solution
Physical address format:
To form the physical address, concatenate the physical page number (PPN) from the PTE with virtual page offset (VPO) from the virtual address, which forms “0x05FC”.
Physical address = 0x05FC
The physical address is in hexadecimal format; convert it into binary format. Convert each Hexadecimal digit to a 4 bit binary equivalent:
0 | 5 | F | C |
0000 | 1011 | 1111 | 1100 |
The above binary values are filled in the physical address 12 bits format as follows,
11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
D.
The physical address has additional three more components. They are Byte offset within cache block (CO), Cache index (CI) and Cache tag (CT).
D.
Explanation of Solution
Physical address format:
11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
The lower-order “2 bits” of the physical address represents “CO”, the next “4 bits” represents “CI” and the remaining “6 bits” represents “CT”.
Value of Byte offset (CO):
1 | 0 |
0 | 0 |
CO = 11 = 0x0
Value of Cache index (CI):
5 | 4 | 3 | 2 |
1 | 1 | 1 | 1 |
CI = 1111 = 0xF
Value of Cache tag (CT):
11 | 10 | 9 | 8 | 7 | 6 |
0 | 1 | 0 | 1 | 1 | 1 |
CT = 01 0111 = 0x17
Cache hit: No
The cache index is not matches the cache tag.
Value of Cache byte:
The cached byte is not returned because the cache index is not matches the cache tag.
Completed Table:
Parameter | Value |
Byte offset | 0x0 |
Cache index | 0xF |
Cache tag | 0x17 |
Cache hit? (Y/N) | N |
Cache byte returned | --- |
Want to see more full solutions like this?
Chapter 9 Solutions
COMPUTER SYSTEMS&MOD MSGT/ET SA AC PKG
- Translate the following VM commands to Assembly instructions: □ push constant 1 □ push constant 5arrow_forwardSuppose the state of the argument and local memory segments are as follows: argument local stack 0 0 9 sp-> 256 1 257 1 14 2 258 259 Now consider the following VM code: 1 push constant 2 pop local @ 3 push constant 15 4 pop local 1 5 push local 1 6 push argument 1 7 gt 8 pop local 2 9 push local 0 10 push argument 0 11 add 12 pop local 0 13 push local 1 14 push local 1 15 push constant 1 16 sub 17 add 18 pop local 1 What will be the value of local 1 after the VM code has executed?arrow_forwardSuppose the state of the RAM is as follows and the adjacent assembly code will execute: RAM 0 3 1 2 2 0 فيا 3 6 456 5 1 4 1234567 $1 A = M A = M A = M D = M @4 M = D What will be the value of the RAM[4] following the assembly code execution?arrow_forward
- Two industries that use decision trees extensively are lenders (banks, mortgage companies, etc.) and insurance. Discuss how a decision tree is used to solve a business problem.arrow_forwardand some More lab 9 For the last lab of the term, I want you to create a practical application for your database, in which you modify it in some way, for instance, taking a new order. Since the emphasis is on the database connectivity, neither a GUI nor a web application is required. In fact, a GUI would require x2go, which I don't have at home and you probably don't either. A web interface would need to be on osiris, I could figure out some way to try it out, I guess. There are also numerous security concerns. The applications should be easy for someone like a store employee or on-line customer to use. The most common operations, such as adding a customer or renting a tool, should be implemented. These Part 1 instructions now include how to use postgresql in C as well as Java and python. The important issue of transactions and commit status is addressed here. Some previous notes about web applications, and the PHP language [Previously I wrote] Now write one more program, that updates…arrow_forwardc# app formarrow_forward
- (a) Giving C and k constants, determine the big-theta for the function: f(x) = 9x4 − x³ +5x+2+(-13 + 9x³ - 7x)log(8x6 + 5x³ + 9x² + 11x + 3) -arrow_forwardFollow the instructionsarrow_forwardPlease help me adjust the X-axis on my graphs in Excel spreadsheet. Range numbers are from 200 to 500 but is graphed 0 to 300. Link:https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/EdVWDTGQ2hNJuGHiHPukjuIB9DBRlyoUC8Fuqlxj2E_CQg Thank you!arrow_forward
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education