
Concept explainers
(a)
Interpretation:
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.
(b)
Interpretation:
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.
(c)
Interpretation:
The Lewis electron-dot symbol of
Concept introduction:
Lewis electron-dot symbol is a representation employed to donate the valence electron present in the atom. It includes atom symbol to represent inner electrons and nucleus and the dots represent the valence present in the atom.
Steps to write the Lewis electron-dot symbol is as follows:
1. Determine the group of the atom so that the valence electron present in it can be calculated.
2. Put one dot at a time around the four sides of the atom.
3. Add more dots and pair them to complete the valence electron present in the atom.
The number of dots around metal is the number of electrons that metal can lose to form cation and the number of dots around nonmetal is the number of electrons that nonmetal can gain to form anion or the number of electrons that non-metal can share to form a covalent bond.

Want to see the full answer?
Check out a sample textbook solution
Chapter 9 Solutions
Student Solutions Manual For Silberberg Chemistry: The Molecular Nature Of Matter And Change With Advanced Topics
- pls helparrow_forward35) Complete the following equation by drawing the line the structure of the products that are formed. Please note that in some cases more than one product is possible. You must draw all possible products to recive full marks! a. ethanol + 2-propanol + H2SO4 → b. OH conc. H2SO4 CH2 H3C CH + K2Cr2O7 C. d. H3C A pressure CH3 + H2 CH Pt catalystarrow_forward21) The rate of reaction depends upon: a. the concentration and nature of reactants b. the temperature of the reaction C. whether or not a catalyst was used d. all of the above 22) A Maxwell-Boltzmann curve shows the distribution of molecular energies in a reaction system. When the temperature in this system is increased, the peak is a. higher and further to the right. b. higher and further to the left. c. lower and further to the right. d. lower and further to the left. 23) Which of the following correctly describes the reaction represented by the reaction below? CaCO3 (s) + energy → CaO (s) + CO2 (g) a. It is exothermic and the potential energy is greater in the reactants than the products. b. c. It is exothermic and the potential energy is greater in the products than the reactants. It is endothermic and the potential energy is greater in the products than the reactants. d. It is endothermic and the potential energy is equal for the products and reactants.arrow_forward
- 30) Substance A to E below are listed with several of their properties. The identities of the substances are identified in random order below: Iron, ethane, ethanol, sodium nitrate, graphite First classify each substance as either a polar covalent compound, non-polar covalent compound, ionic compound, metallic solid, or network solid. Write your predictions in the sixth coloumn of the chart, under "type of substance." Then, identify the identity of the substance in the last coloumn. Substance Melting Point Boiling Point Solubility in H₂O Electrical Conductivity Type of Substance Identity of Substance (°C) (°C) as: Solid, Liquids, Solution A -182 -88 Insoluble No/No/- B 1538 2862 Insoluble Yes/Yes/- C 308 380 Soluble Yes/Yes/Yes Ꭰ 3456 Insoluble No/-/- E -114 78 Soluble No/No/Noarrow_forwardpls helparrow_forward28) Explain the process of galvanization. In your description, make sure to explain what metal is usually used for galvanization and why this metal used.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





