Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
8th Edition
ISBN: 9780134421377
Author: Charles H Corwin
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 8ST
Interpretation Introduction
Interpretation:
In the
Concept Introduction:
According to Avogadro’s hypothesis, at same pressure and temperature conditions, equal volume of the gases contains same amount of gas particles. At standard temperature and pressure conditions,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What volume of hydrogen sulfide is required to produce 162 liters of sulfur dioxide according to the
following reaction? (All gases are at the same temperature and pressure.)
hydrogen sulfide (g) + oxygen(g) → water (1) + sulfur dioxide (g)
Volume=
L
A student decides to conduct an experiment by using two different flasks and two different gas samples. In flask 1, there exists Neon (Ne) gas, whereas the second flask is
filled with nitrogen (N2) gas. If both flasks are kept at 1 K, answer the following questions.
(Note: Molar mass of N2 = 28.014 g mol1, molar mass of Neon = 20.1797 g mol1, R=8.31 J. mol.K-1, k= 1.38 x 10-23 J.K-1, Avogadro's number =
6.02 x 1023
mo/-1
:)
a)
Find the average kinetic energy of one Neon molecule. 6.21e-21
b)
Calculate the average kinetic energy (translational+rotational) of one nitrogen molecule by including rotational motion in your calculations. 1.035e-20
J
c) Find the root-mean-square speed of one neon molecule. 35.14
VV ms-1
Please don't provide handwritten solution....
Chapter 9 Solutions
Introductory Chemistry: Concepts and Critical Thinking (8th Edition)
Ch. 9 - Prob. 1CECh. 9 - Prob. 2CECh. 9 - Prob. 3CECh. 9 - Prob. 4CECh. 9 - Prob. 5CECh. 9 - Prob. 6CECh. 9 - Prob. 7CECh. 9 - Prob. 8CECh. 9 - Prob. 9CECh. 9 - Prob. 10CE
Ch. 9 - Prob. 11CECh. 9 - Prob. 12CECh. 9 - Prob. 13CECh. 9 - Prob. 1KTCh. 9 - Prob. 2KTCh. 9 - Prob. 3KTCh. 9 - Prob. 4KTCh. 9 - Prob. 5KTCh. 9 - Prob. 6KTCh. 9 - Prob. 7KTCh. 9 - Prob. 8KTCh. 9 - Prob. 9KTCh. 9 - Prob. 10KTCh. 9 - Prob. 11KTCh. 9 - Prob. 12KTCh. 9 - Prob. 13KTCh. 9 - Prob. 14KTCh. 9 - Prob. 15KTCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12ECh. 9 - Prob. 13ECh. 9 - Prob. 14ECh. 9 - Prob. 15ECh. 9 - Prob. 16ECh. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - Prob. 19ECh. 9 - Prob. 20ECh. 9 - Prob. 21ECh. 9 - Prob. 22ECh. 9 - Prob. 23ECh. 9 - Prob. 24ECh. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - Prob. 27ECh. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Prob. 30ECh. 9 - Prob. 31ECh. 9 - Prob. 32ECh. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Prob. 35ECh. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - Prob. 38ECh. 9 - Prob. 39ECh. 9 - Prob. 40ECh. 9 - Prob. 41ECh. 9 - Prob. 42ECh. 9 - Prob. 43ECh. 9 - Prob. 44ECh. 9 - Prob. 45ECh. 9 - Prob. 46ECh. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - Prob. 49ECh. 9 - Prob. 50ECh. 9 - Prob. 51ECh. 9 - Prob. 52ECh. 9 - Prob. 53ECh. 9 - Prob. 54ECh. 9 - Prob. 55ECh. 9 - Prob. 56ECh. 9 - Prob. 57ECh. 9 - Prob. 58ECh. 9 - Prob. 59ECh. 9 - Prob. 60ECh. 9 - Prob. 61ECh. 9 - Prob. 62ECh. 9 - Prob. 63ECh. 9 - Prob. 64ECh. 9 - Prob. 65ECh. 9 - Prob. 66ECh. 9 - Prob. 67ECh. 9 - Prob. 68ECh. 9 - Prob. 69ECh. 9 - Prob. 70ECh. 9 - Prob. 71ECh. 9 - Prob. 72ECh. 9 - Prob. 73ECh. 9 - Prob. 74ECh. 9 - Prob. 75ECh. 9 - Prob. 76ECh. 9 - Prob. 77ECh. 9 - Prob. 78ECh. 9 - Prob. 79ECh. 9 - Prob. 80ECh. 9 - Prob. 81ECh. 9 - Prob. 82ECh. 9 - Prob. 83ECh. 9 - Prob. 84ECh. 9 - Prob. 85ECh. 9 - Prob. 86ECh. 9 - Prob. 87ECh. 9 - Prob. 88ECh. 9 - Prob. 89ECh. 9 - Prob. 90ECh. 9 - Prob. 1STCh. 9 - Prob. 2STCh. 9 - Prob. 3STCh. 9 - Prob. 4STCh. 9 - Prob. 5STCh. 9 - Prob. 6STCh. 9 - Prob. 7STCh. 9 - Prob. 8STCh. 9 - Prob. 9STCh. 9 - Prob. 10STCh. 9 - Prob. 11STCh. 9 - Prob. 12STCh. 9 - Prob. 13STCh. 9 - Prob. 14STCh. 9 - Prob. 15ST
Knowledge Booster
Similar questions
- 62 Ammonium dinitramide (ADN), NH4N(NO2)2, was considered as a possible replacement for aluminium chloride as the oxidizer in the solid fuel booster rockets used to launch the space shuttle. When detonated by a spark, AND rapidly decomposes to produce a gaseous mixture of N2,O2, and H2O. (This is not a combustion reaction. The ADN is the only reactant.) The reaction releases a lot of heat, so the gases are initially formed at high temperature and pressure. The thrust of the rocket results mainly from the expansion of this gas mixture. Suppose a 2.3-kg sample of ADN is denoted and decomposes completely to give N2,O2, and H2O. If the resulting gas mixture expands until it reaches a temperature of 100°C and a pressure of 1.00 atm, what volume will it occupy? Is your answer consistent with the proposed use of ADN as a rocket fuel?arrow_forwardIs there a difference between a homogeneous mixture of hydrogen and oxygen in a 2:1 ratio and a sample of water vapor? Explain.arrow_forwardIf an electric current is passed through molten sodium chloride, elemental chlorine gas is generated as the sodium chloride is decomposed. :math>2NaCl(1)2Na(s)+Cl2(g) at volume of chlorine gas measured at 767 mm Hg at 25 °C would be generated by complete decomposition of 1.25 g of NaCl?arrow_forward
- A power plant is driven by the combustion of a complex fossil fuel having the formula C11H7S. Assume the air supply is composed of only N2 and O2 with a molar ratio of 3.76:1.00, and the N2 remains unreacted. In addition to the water produced, the fuels C is completely combusted to CO2 and its sulfur content is converted to SO2. In order to evaluate gases emitted at the exhaust stacks for environmental regulation purposes, the nitrogen supplied with the air must also be included in the balanced reactions. a Including the N2 supplied m the air, write a balanced combustion equation for the complex fuel assuming 100% stoichiometric combustion (i.e., when there is no excess oxygen in the products and the only C-containing product is CO2). Except in the case of N2, use only integer coefficients. b Including N2 supplied in the air, write a balanced combustion equation for the complex fuel assuming 120% stoichiometric combustion (i.e., when excess oxygen is present in the products and the only C-containing product is CO2). Except in the case of use only integer coefficients c Calculate the minimum mass (in kg) of air required to completely combust 1700 kg of C11H7S. d Calculate the air/fuel mass ratio, assuming 100% stoichiometric combustion. e Calculate the air/fuel mass ratio, assuming 120% stoichiometric combustion.arrow_forwardWhat is the mass of a 5.6 liter (STP) sample of CO2 gas?arrow_forwardThe density of F2 gas is 1.70 g/L.How many moles of F2 gas are present in a 475 L sample of a gas mixture that is 4.00 % fluorine and 96.00 % helium?arrow_forward
- both questions pleasearrow_forwardNitroglycerin (C3H5N3O9) is a powerful explosive. Its decomposition may be represented by 4C3H5N3O9 ⟶ 6N2 + 12CO2 + 10H2O + O2 This reaction generates a large amount of heat and many gaseous products. It is the sudden formation of these gases, together with their rapid expansion, that produces the explosion. (a) What is the maxi- mum amount of O2 in grams that can be obtained from 2.00 × 102 g of nitroglycerin? (b) Calculate the percent yield in this reaction if the amount of O2 generated is found to be 6.55 g.arrow_forwardA baker uses baking soda as the leavening agentfor his pumpkin-bread recipe. The baking soda decomposesaccording to two possible reactions.2NaHCO 3(s) → Na 2C O 3(s) + H 2O(l) + CO 2(g)NaHC O 3 (s) + H + (aq) → H 2 O(l) + C O 2 (g) + Na+(aq)Calculate the volume of C O 2 that forms per gram ofNaHC O 3 by each reaction process. Assume the reactionstake place at 210°C and 0.985 atm.arrow_forward
- This is my second time asking this question, the first one came out as incorrect for both answers (I attached pictures of answers). I'm not sure what is done incorrectly. Phosphorus pentachloride decomposes according to the chemical equation PCl5(g)↽−−⇀PCl3(g)+Cl2(g) ?c=1.80 at 250 A 0.2738 mol sample of PCl5(g) is injected into an empty 3.90 L reaction vessel held at 250 ∘C. Calculate the concentrations of PCl5(g) and PCl3(g) at equilibrium.arrow_forwardanswer all the parts of the following questionarrow_forwardConsider the following reactions:CoO (s) + CO (g) D CO2 (g) + Co (s) Kc(1) = 490.2 CoO (s) + 2 H2 (g) D 2 Co (s) + 2 H2O (g) Kc(2) = 4.5 x 103a. Write the overall equation for the reaction of hydrogen gas and carbon dioxide gas to produce carbon monoxide gas and steam.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning