EBK ELECTRIC CIRCUITS
EBK ELECTRIC CIRCUITS
11th Edition
ISBN: 8220106795262
Author: Riedel
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 84P

a.

To determine

Find the values of Vl and Vs.

b.

To determine

Draw the phasor diagram for Vs,VlandVL.

c.

To determine

How much amplitude of Vs must be increased to maintain the load voltage to 120 V for RL=2.5ΩandXL=j4Ω.

d.

To determine

How much amplitude of Vs must be increased to maintain the load voltage to 120 V for RL=2.5ΩandXL=j4Ω and capacitive reactance of j2Ω connected across the load terminals.

Blurred answer
Students have asked these similar questions
Problem 4 Consider a unity (negative) feedback system whose open-loop transfer function is given by K(s+1)(s+2) G(s): s(s +10) Assume K = 1. (a) What is the type of the system? (b) Find static position error constant Kp, static velocity error constant Ky and static acceleration error constant Ka (c) Find the steady state-error of the system for following each of the following inputs. (i) (!!) t³ 1(t) (t+2) 1(t) (d) Find the range of K, for which steady-state error of the system for ramp input will be less than 0.05?
An inner-city metro-bus weighs approximately 10,000 kg including passenger loads, travels 500 km per fully charged battery, and consumes 420 Wh/km. Design a lithium-ion battery pack for the metro-bus using newly developed cells made of silicon anode and lithium manganese-iron phosphate (LMFP) with formulation of Si // 4(LiMn5Fe0.5PO4). The cell average voltage is 3.5V and its capacity 4Ah. The nominal battery pack voltage is 350V. Report the battery pack configuration: Calculate the amount of silicon and LMFP cathode that is required for a single cell at 4Ah capacity. Atomic weight of elements in gram: Si=28 , Li=7, Mn=55,    Fe=56,   P=31, and O=16.                                  If the building block cell is designed in a cylindrical format (2cm diameter and 10 cm height), calculate the energy density (Wh/lit) and specific energy (Wh/kg) at the cell level and at the battery pack level. Assume cell weight 100g, and cells are arranged in two layers in the battery pack with top…
Problem 2 Consider the following feedback control system. (i) (ii) K(s+2) s(s + 1)(s+3) 5+6 5+7 Use Routh-Hurwitz criterion to find the range of K for which the closed-loop system is stable. Using the Routh table from part (a), find the range of K for which the closed-loop system will have one pole in the ORHP and rest of the poles in the OLHP. This implies there will be only one sign changes in the 1st column.

Chapter 9 Solutions

EBK ELECTRIC CIRCUITS

Ch. 9.8 - Use the node-voltage method to find the...Ch. 9.9 - Use the mesh-current method to find the phasor...Ch. 9.10 - Prob. 14APCh. 9.11 - The source voltage in the phasor domain circuit in...Ch. 9 - Prob. 1PCh. 9 - A sinusoidal voltage is given by the...Ch. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Find the rms value of the half-wave rectified...Ch. 9 - Verify that Eq. 9.7 is the solution of Eq. 9.6....Ch. 9 - Prob. 10PCh. 9 - Use the concept of the phasor to combine the...Ch. 9 - The expressions for the steady-state voltage and...Ch. 9 - Prob. 13PCh. 9 - A 50 kHz sinusoidal voltage has zero phase angle...Ch. 9 - Prob. 15PCh. 9 - A 10 Ω resistor and a 5 μF capacitor are connected...Ch. 9 - Three branches having impedances of , and ,...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Show that at a given frequency ω, the circuits in...Ch. 9 - Show that at a given frequency ω, the circuits in...Ch. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Find the admittance Yab in the circuit seen in...Ch. 9 - Find the impedance Zab in the circuit seen in Fig....Ch. 9 - For 1he circuit shown in Fig. P9.27 find the...Ch. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - The circuit in Fig. P9.30 is operating in the...Ch. 9 - Find the steady-state expression for vo in the...Ch. 9 - Prob. 33PCh. 9 - Find the value of Z in the circuit seen in Fig....Ch. 9 - Find Ib and Z in the circuit shown in Fig. P9.35...Ch. 9 - The circuit shown in Fig. P9.36 is operating in...Ch. 9 - The frequency of the sinusoidal voltage source in...Ch. 9 - The frequency of the sinusoidal voltage source in...Ch. 9 - The frequency of the source voltage in the circuit...Ch. 9 - The circuit shown in Fig. P9.40 is operating in...Ch. 9 - The source voltage in the circuit in Fig. P9.41 is...Ch. 9 - Find Zab for the circuit shown in Fig P9.42. Ch. 9 - Use source transformations to find the Thévenin...Ch. 9 - Use source transformations to find the Norton...Ch. 9 - The sinusoidal voltage source in the circuit in...Ch. 9 - Find the Norton equivalent circuit with respect to...Ch. 9 - Prob. 47PCh. 9 - Find the Norton equivalent with respect to...Ch. 9 - Find the Norton equivalent circuit with respect to...Ch. 9 - Find the Thévenin equivalent circuit with respect...Ch. 9 - Prob. 51PCh. 9 - Find Zab in the circuit shown in Fig. P9.52 when...Ch. 9 - The circuit shown in Fig. P9.53 is operating at a...Ch. 9 - PSPICEMULTISIM Use the node-voltage method to find...Ch. 9 - Use the node-voltage method to find V0 in the...Ch. 9 - PSPICEMULTISIM Use the node-voltage method to find...Ch. 9 - Use the node-voltage method to find V0 and I0 in...Ch. 9 - Use the node-voltage method to find the phasor...Ch. 9 - Use the mesh-current method to find the...Ch. 9 - Use the mesh-current method to find the...Ch. 9 - Use the mesh-current method to find the...Ch. 9 - Use the mesh-current method to find the...Ch. 9 - Use the mesh-current method to find the branch...Ch. 9 - Use the mesh-current method to find the...Ch. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - For the circuit in Fig. P9.67, suppose What...Ch. 9 - For the circuit in Fig. P9.68, suppose What...Ch. 9 - The op amp in the circuit in Fig. P9.69 is...Ch. 9 - Prob. 70PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Find the steady-state expressions for the currents...Ch. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - The sinusoidal voltage source in the circuit seen...Ch. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 88PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Types of Energy for Kids - Renewable and Non-Renewable Energies; Author: Smile and Learn - English;https://www.youtube.com/watch?v=w16-Uems2Qo;License: Standard Youtube License