Pancake collapse of a tall building. In the section of a tall building shown in Fig. 9-71 a , the infrastructure of any given floor K must support the weight W of all higher floors. Normally the infrastructure is constructed with a safety factor s so that it can withstand an even greater downward force of sW . If, however, the support columns between K and L suddenly collapse and allow the higher floors to free-fall together onto floor K (Fig. 9-71 b ), the force in the collision can exceed sW and, after a brief pause, cause K to collapse onto floor J, which collapses on floor I, and so on until the ground is reached. Assume that the floors are separated by d = 4.0 m and have the same mass. Also assume that when the floors above K free-fall onto K, the collision lasts 1.5 ms. Under these simplified conditions, what value must the safety factor 5 exceed to prevent pancake collapse of the building? Figure 9-71 Problem 82.
Pancake collapse of a tall building. In the section of a tall building shown in Fig. 9-71 a , the infrastructure of any given floor K must support the weight W of all higher floors. Normally the infrastructure is constructed with a safety factor s so that it can withstand an even greater downward force of sW . If, however, the support columns between K and L suddenly collapse and allow the higher floors to free-fall together onto floor K (Fig. 9-71 b ), the force in the collision can exceed sW and, after a brief pause, cause K to collapse onto floor J, which collapses on floor I, and so on until the ground is reached. Assume that the floors are separated by d = 4.0 m and have the same mass. Also assume that when the floors above K free-fall onto K, the collision lasts 1.5 ms. Under these simplified conditions, what value must the safety factor 5 exceed to prevent pancake collapse of the building? Figure 9-71 Problem 82.
Pancake collapse of a tall building. In the section of a tall building shown in Fig. 9-71a, the infrastructure of any given floor K must support the weight W of all higher floors. Normally the infrastructure is constructed with a safety factor s so that it can withstand an even greater downward force of sW. If, however, the support columns between K and L suddenly collapse and allow the higher floors to free-fall together onto floor K (Fig. 9-71 b), the force in the collision can exceed sW and, after a brief pause, cause K to collapse onto floor J, which collapses on floor I, and so on until the ground is reached. Assume that the floors are separated by d = 4.0 m and have the same mass. Also assume that when the floors above K free-fall onto K, the collision lasts 1.5 ms. Under these simplified conditions, what value must the safety factor 5 exceed to prevent pancake collapse of the building?
this is an exam past paper question that i need help with becuase i am reviewing not a graded assignment
sunny
(1)
-13-
end. One box contains nothing inside; one has a piece of resistance wire between the terminals
You are provided with three sealed identical matchboxes labelled A, B and C, with terminals at each
and the other, a semi-conductor diode.
Plan and design an experiment to identify the contents of each box.
You are provided with the following elements for your apparatus:
Ammeter
Low voltage power supply
Connecting wires
Labelled circuit diagram
Draw a well-labelled circuit diagram to show how you would connect the apparatus listed
above to each matchbox.
(3 ma
RAD127 Radiographic Equipment and Computers
SI Units in Radiography
Ch. 1 & 2
Instructions: Provide the units for each of the following in full and short forms
1. Mass - kg, 9 or (1b))
・
2. Energy, Work - W = FD,J
3. Air kerma
-(Gya)
4. Absorbed Dose-
5. Effective Dose
J/kg (94+)
jlkg
J/kg, Sv
6. Radioactivity - 5-1, Bq
7. Weight
8. Time
9. Force
10. Power
B9
wt, wt-mg, N
-(s)
F= ma, N, OR 1b.
(JIS), P= work It = Fdlt, J
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.