College Physics 11E Global Edition
11th Edition
ISBN: 9781337620338
Author: SERWAY/VUILLE
Publisher: CENGAGE Learning Custom Publishing
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 71P
Bone has a Young’s modulus of 18 × 109 Pa. Under compression, it can will island a stress or about 160 × 106 Pa before breaking. Assume that a femur (thigh bone) is 0.50 m long, and calculate the amount of compression this bone can withstand before breaking.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls
You hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.
A converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all steps
Chapter 9 Solutions
College Physics 11E Global Edition
Ch. 9.2 - Suppose you have one cubic meter of gold, two...Ch. 9.3 - The pressure at the bottom of a glass filled with...Ch. 9.4 - Several common barometers are built using a...Ch. 9.4 - Blood pressure is normally measured with the cuff...Ch. 9.5 - Atmospheric pressure varies from day to day. The...Ch. 9.5 - The density of lead is greater than iron, and both...Ch. 9.6 - You observe two helium balloons floating next to...Ch. 9 - The three containers in Figure CQ9.1 are filled...Ch. 9 - The density of air is 1.3 kg/m3 at sea level. From...Ch. 9 - Four solid, uniform objects are placed in a...
Ch. 9 - Figure CQ9.4 shows aerial views from directly...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Water flows along a streamline down a river of...Ch. 9 - During inhalation, the pressure in the lungs is...Ch. 9 - The water supply for a city is often provided from...Ch. 9 - An ice cube is placed in a glass of water. What...Ch. 9 - Prob. 11CQCh. 9 - Will an ice cube float higher in water or in an...Ch. 9 - Prob. 13CQCh. 9 - Prob. 14CQCh. 9 - A person in a boat floating in a small pond throws...Ch. 9 - One of the predicted problems due to global...Ch. 9 - An 81.5kg man stands on a horizontal surface. (a)...Ch. 9 - The weight of Earths atmosphere exerts an average...Ch. 9 - Calculate the mass of a solid gold rectangular bar...Ch. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Suppose a distant world with surface gravity of...Ch. 9 - Prob. 8PCh. 9 - (a) Calculate the absolute pressure at the bottom...Ch. 9 - Mercury is poured into a U-tube as shown in Figure...Ch. 9 - A collapsible plastic bag (Fig. F9.11) contains a...Ch. 9 - A hydraulic jack has an input piston of area 0.050...Ch. 9 - A container is filled to a depth of 20.0 cm with...Ch. 9 - Blaise Pascal duplicated Torricellis barometer...Ch. 9 - A sphygmomanometer is a device used to measure...Ch. 9 - Piston in Figure P9.16 has a diameter of 0.25...Ch. 9 - Buoyant Forces and Archimedes Principle A...Ch. 9 - Prob. 18PCh. 9 - A small ferryboat is 4.00 m wide and 6.00 m long....Ch. 9 - A 62.0-kg survivor of a cruise line disaster rests...Ch. 9 - A hot-air balloon consists of a basket banging...Ch. 9 - A large balloon of mass 226 kg is filled with...Ch. 9 - A spherical weather balloon is filled with...Ch. 9 - The average human has a density of 945 kg/m3 after...Ch. 9 - On October 21, 2001, Ian Ashpole of the United...Ch. 9 - The gravitational force exerted on a solid object...Ch. 9 - A cube of wood having an edge dimension of 20.0 cm...Ch. 9 - A light spring of force constant k = 160 N/m rests...Ch. 9 - A sample of an unknown material appears to weigh...Ch. 9 - An object weighing 300 N in air is immersed in...Ch. 9 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 9 - A horizontal pipe narrows from a radius of 0.250 m...Ch. 9 - A large water tank is 3.00 m high and filled lo...Ch. 9 - Wafer flowing through a garden hose of diameter...Ch. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - A hypodermic syringe contain a medicine with the...Ch. 9 - When a person inhales, air moves down the bronchus...Ch. 9 - A jet airplane in level flight has a mass of 8.66 ...Ch. 9 - A man attaches a divider to an outdoor faucet so...Ch. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - A jet of water squirts out horizontally from a...Ch. 9 - A large storage tank, open to the atmosphere at...Ch. 9 - The inside diameters of the larger portions of the...Ch. 9 - Water is pumped through a pipe of diameter 15.0 cm...Ch. 9 - Old Faithful geyser in Yellowstone Park erupts at...Ch. 9 - The Venturi tube shown in Figure P9.48 may be used...Ch. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - A certain fluid has a density of 1.080 kg/m3 and...Ch. 9 - Whole blood has a surface tension of 0.058 N/m and...Ch. 9 - Prob. 53PCh. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Spherical panicles of a protein of density 1.8...Ch. 9 - A hypodermic needle is 3.0 era in length and 0.30...Ch. 9 - Prob. 59PCh. 9 - The aorta in humans has a diameter of about 2.0...Ch. 9 - Prob. 61PCh. 9 - Glycerin in water diffuses along a horizontal...Ch. 9 - Prob. 63PCh. 9 - Small spheres of diameter 1.00 mm fall through 20C...Ch. 9 - The Deformation of Solids 65. A 200.-kg load is...Ch. 9 - A 25.0-m long steel cable with a cross-sectional...Ch. 9 - A plank 2.00 cm thick and 15.0 cm wide is firmly...Ch. 9 - Artificial diamonds can be made using...Ch. 9 - For safety in climbing, a mountaineer uses a nylon...Ch. 9 - Assume that if the shear stress in steel exceeds...Ch. 9 - Bone has a Youngs modulus of 18 109 Pa. Under...Ch. 9 - A stainless-steel orthodontic: wire is applied to...Ch. 9 - A high-speed lifting mechanism supports an 800.-kg...Ch. 9 - The deepest point in the ocean is in the Mariana...Ch. 9 - Prob. 75PCh. 9 - The total cross-sectional area of the load-bearing...Ch. 9 - An iron block of volume 0.20 m5 is suspended from...Ch. 9 - Prob. 78APCh. 9 - In most species of clingfish (family...Ch. 9 - Prob. 80APCh. 9 - Prob. 81APCh. 9 - Superman attempts to drink water through a very...Ch. 9 - The human brain and spinal cord are immersed in...Ch. 9 - A Hydrometer is an instrument used to determine...Ch. 9 - Prob. 85APCh. 9 - A helium-filled balloon, whose envelope has a mass...Ch. 9 - A light spring of constant A = 90.0 N/m is...Ch. 9 - A U-tube open at both ends is partially filled...Ch. 9 - In about 1657. Otto von Guericke, inventor of the...Ch. 9 - Oil having a density of 930 kg/m3 floats on water....Ch. 9 - Prob. 91AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardneed help part earrow_forwardCritical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forward
- NASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…arrow_forward12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forwardneed help part darrow_forward
- A cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forwardî A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forward
- In the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forwardFor which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY