
Concept explainers
(a)
Interpretation:
The packing efficiency of the simple cubic cell (1atom/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(a)

Answer to Problem 62QAP
The packing efficiency of the simple cubic cell (1atom/cell) is 52 %.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency.
The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the simple cubic cell is:
Put the above values in (1):
And the relation between r and s:
2r = s
There is only one atom present in the simple cubic cell.
Therefore,
Packing efficiency = 52 %.
(b)
Interpretation:
The packing efficiency of face-centered cubic cell (4 atoms/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(b)

Answer to Problem 62QAP
The packing efficiency of the face-centered cubic cell (4atom/cell) is 74%.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency.
The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the face-centered cubic cell is:
Put the above values in (1):
And the relation between r and s:
There are four atoms present in the face-centered cubic cell.
Therefore,
Packing efficiency = 74 %
(c)
Interpretation:
The packing efficiency of a body-centered cubic cell (2 atoms/cell) is to be determined.
Concept Introduction:
Packing efficiency of the cubic cell is calculated by the following formula:
(c)

Answer to Problem 62QAP
The packing efficiency of a body-centered cubic cell (2 atom/cell) is 68 %.
Explanation of Solution
Given:
The volume of one atom is
The percentage of the total of solid occupied by the spherical atoms in the cell is said to be packing efficiency. The mathematical formula for the packing efficiency is:
In cubic cell, edge length is denoted as ‘s’ and the radius as ‘r’.
The relation between edge length and radius of the body-centered cubic cell is:
Put the above values in (1):
The relation between r and s:
There are two atoms present in the body-centered cubic cell.
Therefore,
Packing efficiency = 68 %
Want to see more full solutions like this?
Chapter 9 Solutions
EBK CHEMISTRY: PRINCIPLES AND REACTIONS
- 7.5 1.93 2.05 C B A 4 3 5 The Joh. 9 7 8 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 0.86 OH 10 4 3 5 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 CI 4 3 5 1 2 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2.21 4.00 1.5 2.00 2.07 1.0 ppm 2.76arrow_forwardAssign the functional group bands on the IR spectra.arrow_forwardFind the pH of a 0.120 M solution of HNO2. Find the pH ignoring activity effects (i.e., the normal way). Find the pH in a solution of 0.050 M NaCl, including activityarrow_forward
- Please help me answer these three questions. Required info should be in data table.arrow_forwardDraw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forward
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Can I please get the graph 1: Concentration vs. Density?arrow_forwardOrder the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





