Concept explainers
Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic? Place the species in order of increasing bond length and bond energy.
a. CN+
b. CN
c. CN−
(a)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
(b)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
The
(c)
Interpretation: The electronic configuration for the given diatomic species is to be determined and their bond orders have to be calculated. The paramagnetic species have to be identified. The given molecules have to be placed in the correct order of increasing bond length and bond energy.
Concept introduction: The electronic configuration for multi-electron diatomic is written using the molecular orbitals, derived from the
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
To determine: The electronic configuration of
Answer to Problem 56E
Answer
The configuration of
Explanation of Solution
The electronic configuration of the involved atoms is,
The number of valence electrons present in
The molecular orbital configuration of
Number of bonding electrons
Number of non-bonding electrons
Hence,
Bond order
No unpaired electron is present; hence it is a diamagnetic molecule.
The diatomic configuration of a diatomic species can be determined using the molecular orbital diagram. The difference between the bonding electrons and the non-bonding electrons divided by two gives the bond order of the molecule.
The bond order is inversely proportional to bond length. The molecule having the least bond order value has the greatest bond length.
The bond order is directly proportional to bond energy. The molecule having the least bond order value has the least bond energy.
The bond order is directly proportional to the bond energy and inversely proportional to the bond length.
Want to see more full solutions like this?
Chapter 9 Solutions
WebAssign for Zumdahl/Zumdahl/DeCoste's Chemistry, 10th Edition [Instant Access], Single-Term
- Please provide steps to work for complete understanding.arrow_forwardPlease provide steps to work for complete understanding.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- A certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forwardPlease don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used hand raitingarrow_forwarda) Propose a method to synthesize the following product. More than one step reaction is required. (10 marks)arrow_forwardthe vibrational frequency of I2 is 214.5 cm-1. (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K. (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2. (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning