
(a)
The final velocity of the object.
(a)

Answer to Problem 51AP
The final velocity of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression of impulse momentum equation.
Here,
Substitute
Thus, the final velocity of the object is
Conclusion:
Therefore, the final velocity of the object is
(b)
The acceleration of the object.
(b)

Answer to Problem 51AP
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Here,
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(c)
The acceleration of the object.
(c)

Answer to Problem 51AP
The acceleration of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Substitute
Thus, the acceleration of the object is
Conclusion:
Therefore, the acceleration of the object is
(d)
The vector displacement of the object.
(d)

Answer to Problem 51AP
The vector displacement of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the vector displacement of the object.
Here,
Substitute
Thus, the vector displacement of the object is
Conclusion:
Therefore, the vector displacement of the object is
(e)
The work done on the object.
(e)

Answer to Problem 51AP
The work done on the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the work done on the object.
Here,
Substitute
Thus, the work done on the object is
Conclusion:
Therefore, the work done on the object is
(f)
The final kinetic energy of the object.
(f)

Answer to Problem 51AP
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object.
(g)

Answer to Problem 51AP
The final kinetic energy of the object is
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the final kinetic energy of the object.
Substitute
Thus, the final kinetic energy of the object is
Conclusion:
Therefore, the final kinetic energy of the object is
(h)
The result of comparison of the answers in part (b), (c) and (f), (g).
(h)

Answer to Problem 51AP
The value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Explanation of Solution
Given information: The mass of the object is
Write the expression to calculate the acceleration of the object.
Write the expression to calculate the acceleration of the object.
According to the second law of motion,
Substitute
The equation (2) and (8) are same therefore, the value of acceleration in part (b) and (c) are same.
Write the expression to calculate the work done on the object,
Substitute
The equation (10) and (6) are same.
Thus, the value of kinetic energy in part (f) and (g) are same.
Conclusion:
Therefore, the value of acceleration in part (b), (c) and kinetic energy in part (f), (g) are same.
Want to see more full solutions like this?
Chapter 9 Solutions
Physics for Scientists and Engineers with Modern Physics
- star by spaceship Sixus is about 9.00 ly from Earth. To preach the star in 15.04 (ship time), how fast must you travel? C.arrow_forwardIf light-bulb A is unscrewed, how will the brightness of bulbs B and C change, if at all? How does the current drawn by from the battery change?arrow_forwardCan someone help mearrow_forward
- Can someone help me with this thank youarrow_forward(a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forward
- Figure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forwardCheckpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





