Concept explainers
A small 0.65-kg box is launched from rest by a horizontal spring as shown in Figure P9.50. The block slides on a track down a hill and comes to rest at a distance d from the base of the hill. Kinetic friction between the box and the track is negligible on the hill, but the coefficient of kinetic friction between the box and the horizontal parts of track is 0.35. The spring has a spring constant of 34.5 N/m, and is compressed 30.0 cm with the box attached. The block remains on the track at all times.
a. What would you include in the system? Explain your choice.
b. Calculate d.
(a)
The items included in the system and explain the choice.
Answer to Problem 50PQ
The items included are the box and the tracks surface because the kinetic friction increases the thermal energies and included this thermal energy internal to the system.
Explanation of Solution
In order to keep all the thermal energy into the system, it is better to include both the box and the tracks surface so that it will increase the kinetic friction which leads to the increase in the thermal energies and including both keeps all of this thermal energy internal to the system.
If Earth and spring are the choices, to account for them in terms of changes in gravitational and elastic potential energy without letting anything outside the system to do work.
Figure 1 show the graph of the initial and final energies which will help to organize the energies needed to be taken into account.
Conclusion:
Therefore, the items included are box and the tracks surface because the kinetic friction increases the thermal energies and included this thermal energy internal to the system.
(b)
The value of
Answer to Problem 50PQ
The value of
Explanation of Solution
The reference configuration for the spring is when it is relaxed, and for gravity it is when the box is at the bottom of the ramp. The box is initially at rest
The energy conservation equation for a system is,
Here,
In this problem, Equation (I) will changes to (since all other energies are zero),
Write the expression for the initial gravitational potential energy.
Here,
Write the expression for the initial potential energy of the spring.
Here,
Write the expression for the thermal energy.
Here,
The total path length will be
Kinetic friction is proportional to the normal force which equals the weight.
Here,
Write the expression for the normal force.
Use equation (VIII) in equation (VI),
Use equation (VIII) in (VI), and solve for
Conclusion:
The displacement
Substitute
Therefore, the value of
Want to see more full solutions like this?
Chapter 9 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning