CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
3rd Edition
ISBN: 2818440059223
Author: Hewitt
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 48TE
To determine
To find:
The reason for the person not falling while sitting on the chair.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume that a room at sea level is filled with a gas of nitrogen molecules N2
in thermal equilibrium at -10.0 °C (negative ten degrees Celsius). There are 7 protons and 7
neutrons in the nucleus of a nitrogen atom N. You may take the masses of the proton and the
neutron to be the same, and ignore the mass of the electrons. 1 atm=1.01x105 N/m² ,
h=1.05x10-34 J-s , mp=1.67x10-27 kg, kB = 1.38x10-23 J/K .
a) What is the (particle) number density n according to the ideal gas law?
b) Compare the number density n with the quantum concentration ng at the same
temperature.
c) Is the gas in the classical or quantum regime?
At what temperature hydrogen molecules will escape from the earth's surface?
(Take mass of hydrogen molecule = 0.34 × 10-26 kg, Boltzman constant = 1.38 × 10-23
J/K, radius of the earth = 6.4 x 10° and acceleration due to gravity= 9.8m/s
Why do we say that the elementary units of matter or “building blocks” must be some basic unit of massenergy rather than only of mass?
Chapter 9 Solutions
CONCEPTUAL INTEGRATED SCIENCE (PEARSON+
Ch. 9 - Prob. 1RCQCh. 9 - Prob. 2RCQCh. 9 - Prob. 3RCQCh. 9 - Prob. 4RCQCh. 9 - Prob. 5RCQCh. 9 - Prob. 6RCQCh. 9 - Prob. 7RCQCh. 9 - Prob. 8RCQCh. 9 - Prob. 9RCQCh. 9 - Prob. 10RCQ
Ch. 9 - Prob. 11RCQCh. 9 - Prob. 12RCQCh. 9 - Prob. 13RCQCh. 9 - Prob. 14RCQCh. 9 - Prob. 15RCQCh. 9 - Prob. 16RCQCh. 9 - Prob. 17RCQCh. 9 - Prob. 18RCQCh. 9 - Prob. 19RCQCh. 9 - Prob. 20RCQCh. 9 - Prob. 21RCQCh. 9 - Prob. 22TISCh. 9 - Prob. 23TISCh. 9 - Prob. 24TISCh. 9 - Prob. 25TISCh. 9 - If a baseball were the size of Earth, about how...Ch. 9 - Prob. 27TISCh. 9 - Prob. 28TISCh. 9 - What kind of model is best used to describe...Ch. 9 - Rank these three subatomic particles in order of...Ch. 9 - Prob. 35TCCh. 9 - Consider three 1-gram samples of the matter a...Ch. 9 - Prob. 37TCCh. 9 - Prob. 38TCCh. 9 - Prob. 39TCCh. 9 - Prob. 40TSCh. 9 - Prob. 41TSCh. 9 - Prob. 42TSCh. 9 - Chlorine atomic number 17 is composed of two...Ch. 9 - Prob. 44TECh. 9 - Prob. 45TECh. 9 - If all the molecules of a body remained part of...Ch. 9 - Prob. 47TECh. 9 - Prob. 48TECh. 9 - Where did the carbon atoms in Leslies hair...Ch. 9 - Prob. 50TECh. 9 - Prob. 51TECh. 9 - Prob. 52TECh. 9 - Prob. 53TECh. 9 - Prob. 54TECh. 9 - Why arent we harmed by drinking heavy water:D2O?Ch. 9 - Prob. 56TECh. 9 - Prob. 57TECh. 9 - The nucleus of an electrically neutral iron atom...Ch. 9 - Prob. 59TECh. 9 - Prob. 60TECh. 9 - Why are the atomic masses that are not whole...Ch. 9 - Prob. 62TECh. 9 - Prob. 63TECh. 9 - Prob. 64TECh. 9 - Which is heavier: a water molecule, H2O, or a...Ch. 9 - When we breathe, we inhale oxygen, O2, and exhale...Ch. 9 - A tree takes in carbon dioxide, CO2, and water...Ch. 9 - Prob. 68TECh. 9 - Prob. 69TECh. 9 - Prob. 70TECh. 9 - Prob. 71TECh. 9 - Prob. 72TECh. 9 - Prob. 73TECh. 9 - Prob. 74TECh. 9 - How do we predict the behavior of atoms?Ch. 9 - With scanning probe microscopy technology, we see...Ch. 9 - Prob. 77TECh. 9 - What do the components of a conceptual model have...Ch. 9 - Would you use a physical model or a conceptual...Ch. 9 - Prob. 80TECh. 9 - How is it possible to tell what stars are made of...Ch. 9 - Prob. 82TECh. 9 - Prob. 83TECh. 9 - Prob. 84TECh. 9 - Prob. 85TECh. 9 - Prob. 86TECh. 9 - Prob. 87TECh. 9 - Prob. 88TECh. 9 - Prob. 89TECh. 9 - Prob. 90TECh. 9 - Prob. 91TECh. 9 - Prob. 92TECh. 9 - Prob. 93TECh. 9 - Prob. 94TECh. 9 - Prob. 95TECh. 9 - Prob. 96TECh. 9 - Prob. 97TECh. 9 - Prob. 98TECh. 9 - Prob. 99TECh. 9 - In what sense can you truthfully say that you are...Ch. 9 - Prob. 101TDICh. 9 - Prob. 102TDICh. 9 - Why does an inflated and securely tied rubber...Ch. 9 - Prob. 1RATCh. 9 - Prob. 2RATCh. 9 - Prob. 3RATCh. 9 - Prob. 4RATCh. 9 - Prob. 5RATCh. 9 - Prob. 6RATCh. 9 - Prob. 7RATCh. 9 - Would you use a physical model or a conceptual...Ch. 9 - Prob. 9RATCh. 9 - Prob. 10RAT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cat strolls across your backyard. An hour later, a dog with his nose to the ground follows the trail of the cat. Explain this occurrence from a molecular point of view.arrow_forward1.You are on an interstellar mission from the Earth to the 8.7 light-years distant star Sirius. Yourspaceship can travel with 70% the speed of light and has a cylindrical shape with a diameter of6 m at the front surface and a length of 25 m. You have to cross the interstellar medium with anapproximated density of 1 hydrogen atom/m3.(a) Calculate the time it takes your spaceship to reach Sirius.(b) Determine the mass of interstellar gas that collides with your spaceship during the mission.Note: Use 1.673 × 10−27 kg as proton mass.arrow_forwardThe radio galaxy Cygnus A possesses a lobe of plasma that is detected by both radio and X-ray observatories. The temperature of the X-ray-emitting plasma is 4 keV and the number density of the particles in the plasma is 4x103 m-3. Assume that the plasma is composed solely of completely ionized hydrogen, so the number densities of protons and electrons per cubic meter are identical. * the given number density of particles corresponds to the number density of hydrogen nuclei, so you can safely assume that the number density of electrons is equivalent to this number density a) Compute the temperature of the plasma in Kelvin. b) Using the calculated temperature for the plasma, compute the mean velocity in meters per second of an electron within the plasma. c) Compute the Coulomb cross section in square meters for a collision between an electron and a proton in the plasma.arrow_forward
- The radio galaxy Cygnus A possesses a lobe of plasma that is detected by both radio and X-ray observatories. The temperature of the X-ray-emitting plasma is 4 keV and the number density of the particles in the plasma is 4x103 m-3. Assume that the plasma is composed solely of completely ionized hydrogen, so the number densities of protons and electrons per cubic meter are identical. * the given number density of particles corresponds to the number density of hydrogen nuclei, so you can safely assume that the number density of electrons is equivalent to this number density a) Compute the collision frequency in Hertz between electrons and ions in the plasma. b) Compute the Debye wavelength in meters of the plasma. c) Compute the plasma parameter of the plasma.arrow_forward6. Use Boltzmann distribution to solve this problem. A system consists of 3, 000 particles that can only occupy two energy levels: a nondegen- erate ground state of 0.052 eV and a threefold degenerate excited state at 0.156 eV. If T = 900 K, (a) find the number of particles at each energy level. -0156 ev (b) what is the total energy of the system? 0,052 evarrow_forwardThe nucleus is positive and electrons are negative. Why is there space between them, can't they just get stuck together?arrow_forward
- S Physics: Section 50-4 | Sch x S Physics AB - Final review X S Physics: Section 50-4 | Sch x ← → aldine.schoology.com/assignment/5938514670/assessment AldinelSD.org Bookmarks G Google Image Resu... Gi have one in spanis.... S Solving Absolute V... 10 D Miles away from home 9. 8- 24 1 A B C 0 8:00 9:00 10:00 Time miles. The total distance travelled by the object is The net displacement (Ax) of the object is Displacement (Ax) of the object between 8:00 and 9:30 is Displacement (Ax) of the object between 8:00 and 12:30 is Word Bank: 11:00 Login Home | Schoology 12:00 miles. E 13:00 miles. miles. Physics chapter 6 Flashcar X + Q * X ⠀ Reading listarrow_forward1. Based on the Maxwel Boltzman Distribution Function, find the mean of the following quantities : (The atomic coordinates of momentum space) a) Px, P2, Px, Px b) Py, Py, Py, Py 4. 4 c) P, Pz2, Pz, Pz* d) P, P2, Р3, Р4arrow_forwardAn Erbium-166 nucleus contains 68 protons. The atomic mass of a neutral Erbium-166 atom is 165.930u, where u = 931.5 MeV/c². In this question you may use that the mass of a proton is 938.27 MeV/c², the mass of a neutron is 939.57 MeV/e² and the mass of an electron is 0.511 MeV/c². i. Calculate the nuclear binding energy per nucleon, giving your answer in units of MeV. ii. Electrons with an energy of 0.5 GeV are scattered off the nucleus. Estimate the scattering angle of the first minimum in the resulting diffraction pattern. iii. Briefly comment on whether or not you expect this nucleus to be spherical, and what consequence this has for excited states of the nucleus in the collective model.arrow_forward
- Spaceman Spiff is flying his spacecraft near a neutron star. Assuming the star is located at (0, 0, O) Spiff is able to determine the temperature at a point (x, y, z) is given by T (x, y, z) = (5.0 x 106) e-3x2–3y2–322 Answer these questions to help Spiff out: Spiff is at the location (0,0,-100) and his ship is overheating! What is the absolute worst direction for him to fly in? Spiff's control panel malfunctions and leaves him barreling in a direction parallel to v = (2, -4,5) . Assuming Spiff is at the position (0,0,-100) at what rate will the temperature change as he travels in this direction? As always make sure you submit clear, complete, and detailed solutions to each question.arrow_forwardPlease see 3c.arrow_forward. A general expression for the energy levels of one-electron atoms and ions is uk q°q² E, 2h'n? Here u is the reduced mass of the atom, given by u = m, m,/ (m, + m2), where m is the mass of the electron and m, is the mass of the nucleus; k, is the Coulomb constant; and q and 2 are the charges of the electron and the nucleus, respec- tively. The wavelength for the n= 3 to n = 2 transition of the hydrogen atom is 656.3 nm (visible red light). What are the wavelengths for this same transition in (a) positronium, which consists of an electron and a positron, and (b) singly ionized helium? Note: A positron is a positively charged electron.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning